{"title":"求解零点问题及若干优化问题的加速Tseng型方法","authors":"A. A. Mebawondu, H. A. Abass, O. K. Oyewole","doi":"10.1007/s13370-024-01217-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we proposed a modified Tseng’s splitting iterative algorithm for approximating a solution of split feasibility problem for zero and fixed point problems. By incorporating an inertial extrapolation method and Halpern iterative technique, we established a strong convergence result for approximating a solution of split fixed point problem for a nonexpansive and quasinonexpansive mapping which is also a zero point of sum of two monotone operators in the framework of real Hilbert spaces. Furthermore, we present a numerical example to support our main result. The results obtained in this paper improve, extend and unify some related results in the literature.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-024-01217-1.pdf","citationCount":"0","resultStr":"{\"title\":\"An accelerated Tseng type method for solving zero point problems and certain optimization problems\",\"authors\":\"A. A. Mebawondu, H. A. Abass, O. K. Oyewole\",\"doi\":\"10.1007/s13370-024-01217-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we proposed a modified Tseng’s splitting iterative algorithm for approximating a solution of split feasibility problem for zero and fixed point problems. By incorporating an inertial extrapolation method and Halpern iterative technique, we established a strong convergence result for approximating a solution of split fixed point problem for a nonexpansive and quasinonexpansive mapping which is also a zero point of sum of two monotone operators in the framework of real Hilbert spaces. Furthermore, we present a numerical example to support our main result. The results obtained in this paper improve, extend and unify some related results in the literature.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-024-01217-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01217-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01217-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
An accelerated Tseng type method for solving zero point problems and certain optimization problems
In this paper, we proposed a modified Tseng’s splitting iterative algorithm for approximating a solution of split feasibility problem for zero and fixed point problems. By incorporating an inertial extrapolation method and Halpern iterative technique, we established a strong convergence result for approximating a solution of split fixed point problem for a nonexpansive and quasinonexpansive mapping which is also a zero point of sum of two monotone operators in the framework of real Hilbert spaces. Furthermore, we present a numerical example to support our main result. The results obtained in this paper improve, extend and unify some related results in the literature.