Chenxi Wang, Zhiyuan Xia, Haibo Zhao, Meng Zhao, Enbo Xu, Zhengyu Jin, Chao Yuan, Pengfei Liu, Zhengzong Wu, Bo Cui
{"title":"超声处理对甘薯蛋白功能特性及乳状稳定性的影响","authors":"Chenxi Wang, Zhiyuan Xia, Haibo Zhao, Meng Zhao, Enbo Xu, Zhengyu Jin, Chao Yuan, Pengfei Liu, Zhengzong Wu, Bo Cui","doi":"10.1007/s11483-024-09925-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the effect of ultrasonic treatment on sweet potato protein (SPP) was discussed. The structural and functional characteristics of SPP treated with different ultrasonic amplitudes (20–50%) were analyzed. The findings of the study suggested that the protein size and zeta potential decreased from 1711.00 nm and − 17.87 mV to 447.03 nm and − 42.52 mV (30% amplitude). Appropriate ultrasonic amplitude (30%) can significantly increase protein solubility (72.54%→79.89%) and free sulfhydryl group content (34.65→41.09 µmol/g). Surface hydrophobicity increased significantly by 34.71% at 40% amplitude. The structure of SPP was unfolded and intermolecular interactions were reduced by ultrasonic treatment, affecting the secondary structure and tertiary conformation of SPP, according to Fourier transform infrared spectroscopy, fluorescence spectroscopy and ultraviolet spectroscopy. The proportion of α-helix and random coil increased, while the proportion of β-sheet decreased. When the ultrasonic amplitude reached 30%, the emulsifying activity and stability of SPP were increased by 85.76% and 180.82%, respectively. Moreover, the microstructure and rheological characteristics of the SPP emulsion were investigated in order to assess the impact of ultrasonic treatment on the stability of the emulsion. The results demonstrated that the emulsion produced by the SPP that had undergone ultrasonically treatment had significantly improved emulsion stability due to the increased surface charge, improved network structure, and smaller and more uniform protein size. The study provides a theoretical foundation for promoting the use of SPP in food processing.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Ultrasonic Treatment on Functional Properties and Emulsion Stability of Sweet Potato Protein\",\"authors\":\"Chenxi Wang, Zhiyuan Xia, Haibo Zhao, Meng Zhao, Enbo Xu, Zhengyu Jin, Chao Yuan, Pengfei Liu, Zhengzong Wu, Bo Cui\",\"doi\":\"10.1007/s11483-024-09925-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the effect of ultrasonic treatment on sweet potato protein (SPP) was discussed. The structural and functional characteristics of SPP treated with different ultrasonic amplitudes (20–50%) were analyzed. The findings of the study suggested that the protein size and zeta potential decreased from 1711.00 nm and − 17.87 mV to 447.03 nm and − 42.52 mV (30% amplitude). Appropriate ultrasonic amplitude (30%) can significantly increase protein solubility (72.54%→79.89%) and free sulfhydryl group content (34.65→41.09 µmol/g). Surface hydrophobicity increased significantly by 34.71% at 40% amplitude. The structure of SPP was unfolded and intermolecular interactions were reduced by ultrasonic treatment, affecting the secondary structure and tertiary conformation of SPP, according to Fourier transform infrared spectroscopy, fluorescence spectroscopy and ultraviolet spectroscopy. The proportion of α-helix and random coil increased, while the proportion of β-sheet decreased. When the ultrasonic amplitude reached 30%, the emulsifying activity and stability of SPP were increased by 85.76% and 180.82%, respectively. Moreover, the microstructure and rheological characteristics of the SPP emulsion were investigated in order to assess the impact of ultrasonic treatment on the stability of the emulsion. The results demonstrated that the emulsion produced by the SPP that had undergone ultrasonically treatment had significantly improved emulsion stability due to the increased surface charge, improved network structure, and smaller and more uniform protein size. The study provides a theoretical foundation for promoting the use of SPP in food processing.</p></div>\",\"PeriodicalId\":564,\"journal\":{\"name\":\"Food Biophysics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11483-024-09925-8\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09925-8","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Effect of Ultrasonic Treatment on Functional Properties and Emulsion Stability of Sweet Potato Protein
In this study, the effect of ultrasonic treatment on sweet potato protein (SPP) was discussed. The structural and functional characteristics of SPP treated with different ultrasonic amplitudes (20–50%) were analyzed. The findings of the study suggested that the protein size and zeta potential decreased from 1711.00 nm and − 17.87 mV to 447.03 nm and − 42.52 mV (30% amplitude). Appropriate ultrasonic amplitude (30%) can significantly increase protein solubility (72.54%→79.89%) and free sulfhydryl group content (34.65→41.09 µmol/g). Surface hydrophobicity increased significantly by 34.71% at 40% amplitude. The structure of SPP was unfolded and intermolecular interactions were reduced by ultrasonic treatment, affecting the secondary structure and tertiary conformation of SPP, according to Fourier transform infrared spectroscopy, fluorescence spectroscopy and ultraviolet spectroscopy. The proportion of α-helix and random coil increased, while the proportion of β-sheet decreased. When the ultrasonic amplitude reached 30%, the emulsifying activity and stability of SPP were increased by 85.76% and 180.82%, respectively. Moreover, the microstructure and rheological characteristics of the SPP emulsion were investigated in order to assess the impact of ultrasonic treatment on the stability of the emulsion. The results demonstrated that the emulsion produced by the SPP that had undergone ultrasonically treatment had significantly improved emulsion stability due to the increased surface charge, improved network structure, and smaller and more uniform protein size. The study provides a theoretical foundation for promoting the use of SPP in food processing.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.