甘草酸通过激活PI3k/Akt/Nrf2通路减轻氟哌啶醇诱导的SHSY-5Y细胞和大鼠神经毒性

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mohammad Aqeel, Shubham Upadhayay, Ritika Devi, Kailash Jangid, Vinod Kumar, Puneet Kumar
{"title":"甘草酸通过激活PI3k/Akt/Nrf2通路减轻氟哌啶醇诱导的SHSY-5Y细胞和大鼠神经毒性","authors":"Mohammad Aqeel,&nbsp;Shubham Upadhayay,&nbsp;Ritika Devi,&nbsp;Kailash Jangid,&nbsp;Vinod Kumar,&nbsp;Puneet Kumar","doi":"10.1007/s11064-024-04319-1","DOIUrl":null,"url":null,"abstract":"<div><p>Antipsychotic medications are used to treat a psychological condition called ‘Schizophrenia’. However, its long-term administration causes irregular involuntary motor movements, targeting the orofacial regions. Glycyrrhizic acid (GA) is a naturally occurring triterpene saponin glycoside obtained from the roots of the <i>Glycyrrhiza glabra</i> (liquorice) plant and well known for its antioxidant, antiapoptotic and neuroprotective abilities. The present study investigated the neuroprotective potential of GA against haloperidol (Halo) induced neurotoxicity in SHSY-5Y cells and Wistar rats. Schrodinger software was utilized to estimate the target binding affinity of GA with various targets. To assess cell viability, SHSY-5Y cells were pretreated with GA (25, 50, and 100 µM) 1 h before halo (100 µM) treatment. In an in-vivo study, Wistar rats were divided into five groups: control (saline), halo (1 mg/kg), GA (25 mg/kg), and GA (50 mg/kg). The GA was injected for 21 days, 1 h before halo. All behavior changes were recorded on the 14th and 21st days. Results indicate that pretreatment with GA improves cell viability and reduces ROS formation in halo-treated SHSY-5Y cells, showing its antioxidant ability. Furthermore, GA administration reduced vacuous chewing movements, tongue protrusion, facial jerking, and locomotor abnormalities in halo-treated rats. Moreover, GA treatment improves antioxidant levels, including GSH, and SOD, in halo-injected rats. Additionally, GA treatment upregulates the striatal expression of p-PI3k, p-Akt, and Nrf2 in rats injected with halo. Findings indicate that GA can be a therapeutic agent for tardive dyskinesia and other neurological disorders.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycyrrhizic Acid Mitigates Haloperidol-Induced Neurotoxicity in SHSY-5Y Cells and Rats Via Activation of PI3k/Akt/Nrf2 Pathways\",\"authors\":\"Mohammad Aqeel,&nbsp;Shubham Upadhayay,&nbsp;Ritika Devi,&nbsp;Kailash Jangid,&nbsp;Vinod Kumar,&nbsp;Puneet Kumar\",\"doi\":\"10.1007/s11064-024-04319-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Antipsychotic medications are used to treat a psychological condition called ‘Schizophrenia’. However, its long-term administration causes irregular involuntary motor movements, targeting the orofacial regions. Glycyrrhizic acid (GA) is a naturally occurring triterpene saponin glycoside obtained from the roots of the <i>Glycyrrhiza glabra</i> (liquorice) plant and well known for its antioxidant, antiapoptotic and neuroprotective abilities. The present study investigated the neuroprotective potential of GA against haloperidol (Halo) induced neurotoxicity in SHSY-5Y cells and Wistar rats. Schrodinger software was utilized to estimate the target binding affinity of GA with various targets. To assess cell viability, SHSY-5Y cells were pretreated with GA (25, 50, and 100 µM) 1 h before halo (100 µM) treatment. In an in-vivo study, Wistar rats were divided into five groups: control (saline), halo (1 mg/kg), GA (25 mg/kg), and GA (50 mg/kg). The GA was injected for 21 days, 1 h before halo. All behavior changes were recorded on the 14th and 21st days. Results indicate that pretreatment with GA improves cell viability and reduces ROS formation in halo-treated SHSY-5Y cells, showing its antioxidant ability. Furthermore, GA administration reduced vacuous chewing movements, tongue protrusion, facial jerking, and locomotor abnormalities in halo-treated rats. Moreover, GA treatment improves antioxidant levels, including GSH, and SOD, in halo-injected rats. Additionally, GA treatment upregulates the striatal expression of p-PI3k, p-Akt, and Nrf2 in rats injected with halo. Findings indicate that GA can be a therapeutic agent for tardive dyskinesia and other neurological disorders.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-024-04319-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-024-04319-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗精神病药物用于治疗一种叫做“精神分裂症”的心理状况。然而,长期服用会导致不规则的不自主运动,目标是口面部区域。甘草酸(GA)是一种天然存在的三萜皂苷苷,从甘草植物的根中提取,以其抗氧化、抗凋亡和神经保护能力而闻名。本研究探讨了GA对氟哌啶醇(Halo)诱导的SHSY-5Y细胞和Wistar大鼠的神经毒性的神经保护作用。利用薛定谔软件估计遗传算法与不同靶点的结合亲和力。为了评估细胞活力,在halo(100µM)处理前1小时用GA(25、50和100µM)预处理SHSY-5Y细胞。在体内实验中,Wistar大鼠分为5组:对照组(生理盐水)、halo (1 mg/kg)、GA (25 mg/kg)和GA (50 mg/kg)。GA注射21天,晕前1 h。于第14天和第21天记录所有行为变化。结果表明,GA预处理提高了光晕处理的SHSY-5Y细胞的活力,减少了ROS的形成,显示了其抗氧化能力。此外,GA给药减少了光晕治疗大鼠的空洞咀嚼运动、舌突、面部抽搐和运动异常。此外,GA处理提高了光晕注射大鼠的抗氧化水平,包括GSH和SOD。此外,GA处理上调了注射晕的大鼠纹状体中p-PI3k、p-Akt和Nrf2的表达。研究结果表明,GA可作为迟发性运动障碍和其他神经系统疾病的治疗药物。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Glycyrrhizic Acid Mitigates Haloperidol-Induced Neurotoxicity in SHSY-5Y Cells and Rats Via Activation of PI3k/Akt/Nrf2 Pathways

Glycyrrhizic Acid Mitigates Haloperidol-Induced Neurotoxicity in SHSY-5Y Cells and Rats Via Activation of PI3k/Akt/Nrf2 Pathways

Antipsychotic medications are used to treat a psychological condition called ‘Schizophrenia’. However, its long-term administration causes irregular involuntary motor movements, targeting the orofacial regions. Glycyrrhizic acid (GA) is a naturally occurring triterpene saponin glycoside obtained from the roots of the Glycyrrhiza glabra (liquorice) plant and well known for its antioxidant, antiapoptotic and neuroprotective abilities. The present study investigated the neuroprotective potential of GA against haloperidol (Halo) induced neurotoxicity in SHSY-5Y cells and Wistar rats. Schrodinger software was utilized to estimate the target binding affinity of GA with various targets. To assess cell viability, SHSY-5Y cells were pretreated with GA (25, 50, and 100 µM) 1 h before halo (100 µM) treatment. In an in-vivo study, Wistar rats were divided into five groups: control (saline), halo (1 mg/kg), GA (25 mg/kg), and GA (50 mg/kg). The GA was injected for 21 days, 1 h before halo. All behavior changes were recorded on the 14th and 21st days. Results indicate that pretreatment with GA improves cell viability and reduces ROS formation in halo-treated SHSY-5Y cells, showing its antioxidant ability. Furthermore, GA administration reduced vacuous chewing movements, tongue protrusion, facial jerking, and locomotor abnormalities in halo-treated rats. Moreover, GA treatment improves antioxidant levels, including GSH, and SOD, in halo-injected rats. Additionally, GA treatment upregulates the striatal expression of p-PI3k, p-Akt, and Nrf2 in rats injected with halo. Findings indicate that GA can be a therapeutic agent for tardive dyskinesia and other neurological disorders.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信