多模态图像与射频融合优化车辆定位

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ouwen Huan;Tao Luo;Mingzhe Chen
{"title":"多模态图像与射频融合优化车辆定位","authors":"Ouwen Huan;Tao Luo;Mingzhe Chen","doi":"10.1109/TMC.2024.3469252","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-modal vehicle positioning framework that jointly localizes vehicles with channel state information (CSI) and images is designed. In particular, we consider an outdoor scenario where each vehicle can communicate with only one BS, and hence, it can upload its estimated CSI to only its associated BS. Each BS is equipped with a set of cameras, such that it can collect a small number of labeled CSI, a large number of unlabeled CSI, and the images taken by cameras. To exploit the unlabeled CSI data and position labels obtained from images, we design an meta-learning based hard expectation-maximization (EM) algorithm. Specifically, since we do not know the corresponding relationship between unlabeled CSI and the multiple vehicle locations in images, we formulate the calculation of the training objective as a minimum matching problem. To reduce the impact of label noises caused by incorrect matching between unlabeled CSI and vehicle locations obtained from images and achieve better convergence, we introduce a weighted loss function on the unlabeled datasets, and study the use of a meta-learning algorithm for computing the weighted loss. Subsequently, the model parameters are updated according to the weighted loss function of unlabeled CSI samples and their matched position labels obtained from images. Simulation results show that the proposed method can reduce the positioning error by up to 61% compared to a baseline that does not use images and uses only CSI fingerprint for vehicle positioning.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"696-708"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Modal Image and Radio Frequency Fusion for Optimizing Vehicle Positioning\",\"authors\":\"Ouwen Huan;Tao Luo;Mingzhe Chen\",\"doi\":\"10.1109/TMC.2024.3469252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a multi-modal vehicle positioning framework that jointly localizes vehicles with channel state information (CSI) and images is designed. In particular, we consider an outdoor scenario where each vehicle can communicate with only one BS, and hence, it can upload its estimated CSI to only its associated BS. Each BS is equipped with a set of cameras, such that it can collect a small number of labeled CSI, a large number of unlabeled CSI, and the images taken by cameras. To exploit the unlabeled CSI data and position labels obtained from images, we design an meta-learning based hard expectation-maximization (EM) algorithm. Specifically, since we do not know the corresponding relationship between unlabeled CSI and the multiple vehicle locations in images, we formulate the calculation of the training objective as a minimum matching problem. To reduce the impact of label noises caused by incorrect matching between unlabeled CSI and vehicle locations obtained from images and achieve better convergence, we introduce a weighted loss function on the unlabeled datasets, and study the use of a meta-learning algorithm for computing the weighted loss. Subsequently, the model parameters are updated according to the weighted loss function of unlabeled CSI samples and their matched position labels obtained from images. Simulation results show that the proposed method can reduce the positioning error by up to 61% compared to a baseline that does not use images and uses only CSI fingerprint for vehicle positioning.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 2\",\"pages\":\"696-708\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10696965/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10696965/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了一种利用通道状态信息和图像对车辆进行联合定位的多模式车辆定位框架。特别是,我们考虑一个户外场景,其中每辆车只能与一个BS通信,因此,它只能将其估计的CSI上传到与其相关的BS。每个BS都配有一组摄像头,可以收集少量有标签的CSI,大量未标签的CSI,以及摄像头拍摄的图像。为了利用从图像中获得的未标记CSI数据和位置标签,我们设计了一种基于元学习的硬期望最大化(EM)算法。具体来说,由于我们不知道图像中未标记的CSI与多个车辆位置之间的对应关系,我们将训练目标的计算表述为最小匹配问题。为了减少未标记CSI与图像车辆位置不匹配所带来的标签噪声的影响,实现更好的收敛,我们在未标记数据集上引入了加权损失函数,并研究了使用元学习算法计算加权损失的方法。随后,根据从图像中获得的未标记CSI样本及其匹配位置标签的加权损失函数更新模型参数。仿真结果表明,与不使用图像和仅使用CSI指纹进行车辆定位的基线相比,该方法可将定位误差降低61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Modal Image and Radio Frequency Fusion for Optimizing Vehicle Positioning
In this paper, a multi-modal vehicle positioning framework that jointly localizes vehicles with channel state information (CSI) and images is designed. In particular, we consider an outdoor scenario where each vehicle can communicate with only one BS, and hence, it can upload its estimated CSI to only its associated BS. Each BS is equipped with a set of cameras, such that it can collect a small number of labeled CSI, a large number of unlabeled CSI, and the images taken by cameras. To exploit the unlabeled CSI data and position labels obtained from images, we design an meta-learning based hard expectation-maximization (EM) algorithm. Specifically, since we do not know the corresponding relationship between unlabeled CSI and the multiple vehicle locations in images, we formulate the calculation of the training objective as a minimum matching problem. To reduce the impact of label noises caused by incorrect matching between unlabeled CSI and vehicle locations obtained from images and achieve better convergence, we introduce a weighted loss function on the unlabeled datasets, and study the use of a meta-learning algorithm for computing the weighted loss. Subsequently, the model parameters are updated according to the weighted loss function of unlabeled CSI samples and their matched position labels obtained from images. Simulation results show that the proposed method can reduce the positioning error by up to 61% compared to a baseline that does not use images and uses only CSI fingerprint for vehicle positioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信