同时通过直接时效添加剂制造的Al-Ni-Sc-Zr合金提高强度和塑性

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL
Guandong Luo, Han Chen, Lei Hu, Chen Yang, Shuwei Zong, Yanchi Chen, Qing Lian, Hongze Wang, Zhe Chen, Yi Wu, Haowei Wang
{"title":"同时通过直接时效添加剂制造的Al-Ni-Sc-Zr合金提高强度和塑性","authors":"Guandong Luo, Han Chen, Lei Hu, Chen Yang, Shuwei Zong, Yanchi Chen, Qing Lian, Hongze Wang, Zhe Chen, Yi Wu, Haowei Wang","doi":"10.1016/j.ijplas.2025.104243","DOIUrl":null,"url":null,"abstract":"Eutectic Al alloys processed by laser powder bed fusion (LPBF) frequently display metastable cellular structures. The cells are susceptible to decomposition into nanoparticles during ageing. Furthermore, supersaturated solutes can result in additional precipitation during the ageing process. The complicated microstructure evolution observed in LPBF eutectic Al alloys necessitates a comprehensive investigation into their ageing behaviour, to identify the optimal strength and plasticity. Consequently, this study presents a systematic examination of the impact of direct ageing on microstructure evolution in an LPBF Al‒Ni‒Sc‒Zr alloy, analysing associated changes in strength and plasticity. The optimal ageing parameters for strength and plasticity are determined. The results demonstrate that the reduction in strength resulting from cell decomposition can be offset by the strengthening provided by nanoparticles formed due to cell wall spheroidisation and additional supersaturated solute precipitation, achieving excellent yield strength. Furthermore, the transformation of cells into nanoparticles significantly enhances the plasticity by increasing non-uniform strain, which is not well explained by the conventional work hardening theory. A detailed investigation suggests that direct ageing can alleviate dislocation pile-up and strain localisation around cell walls, and reduce the tendency for crack propagation along melt pool boundaries, resulting in a significant increase in non-uniform strain and ultimately, excellent tensile plasticity. This study demonstrates that direct ageing is an effective strategy for simultaneously enhancing the strength and plasticity of LPBF Al–Ni based alloys. The proposed plasticity mechanism offers a new insight into the plastic deformation behaviour of LPBF eutectic Al alloys.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"37 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneously enhancing strength and plasticity via direct ageing in additive manufactured Al–Ni–Sc–Zr alloys\",\"authors\":\"Guandong Luo, Han Chen, Lei Hu, Chen Yang, Shuwei Zong, Yanchi Chen, Qing Lian, Hongze Wang, Zhe Chen, Yi Wu, Haowei Wang\",\"doi\":\"10.1016/j.ijplas.2025.104243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eutectic Al alloys processed by laser powder bed fusion (LPBF) frequently display metastable cellular structures. The cells are susceptible to decomposition into nanoparticles during ageing. Furthermore, supersaturated solutes can result in additional precipitation during the ageing process. The complicated microstructure evolution observed in LPBF eutectic Al alloys necessitates a comprehensive investigation into their ageing behaviour, to identify the optimal strength and plasticity. Consequently, this study presents a systematic examination of the impact of direct ageing on microstructure evolution in an LPBF Al‒Ni‒Sc‒Zr alloy, analysing associated changes in strength and plasticity. The optimal ageing parameters for strength and plasticity are determined. The results demonstrate that the reduction in strength resulting from cell decomposition can be offset by the strengthening provided by nanoparticles formed due to cell wall spheroidisation and additional supersaturated solute precipitation, achieving excellent yield strength. Furthermore, the transformation of cells into nanoparticles significantly enhances the plasticity by increasing non-uniform strain, which is not well explained by the conventional work hardening theory. A detailed investigation suggests that direct ageing can alleviate dislocation pile-up and strain localisation around cell walls, and reduce the tendency for crack propagation along melt pool boundaries, resulting in a significant increase in non-uniform strain and ultimately, excellent tensile plasticity. This study demonstrates that direct ageing is an effective strategy for simultaneously enhancing the strength and plasticity of LPBF Al–Ni based alloys. The proposed plasticity mechanism offers a new insight into the plastic deformation behaviour of LPBF eutectic Al alloys.\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijplas.2025.104243\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104243","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

激光粉末床熔接(LPBF)加工的共晶铝合金经常出现亚稳细胞结构。这些细胞在老化过程中很容易分解成纳米颗粒。此外,过饱和溶质在老化过程中会导致额外的沉淀。在LPBF共晶铝合金中观察到复杂的组织演变,需要对其时效行为进行全面的研究,以确定最佳的强度和塑性。因此,本研究系统地研究了直接时效对LPBF Al-Ni-Sc-Zr合金微观组织演变的影响,分析了强度和塑性的相关变化。确定了最优的强度和塑性老化参数。结果表明,由于细胞壁球化和额外的过饱和溶质沉淀形成的纳米颗粒所提供的强化可以抵消细胞分解导致的强度降低,从而获得优异的屈服强度。此外,细胞向纳米颗粒的转化通过增加非均匀应变而显著提高了塑性,这是传统加工硬化理论无法很好解释的。一项详细的研究表明,直接时效可以缓解胞壁周围的位错堆积和应变局部化,并减少沿熔池边界的裂纹扩展趋势,从而显著增加非均匀应变,最终获得优异的拉伸塑性。研究表明,直接时效是同时提高LPBF Al-Ni基合金强度和塑性的有效策略。提出的塑性机理为研究LPBF共晶铝合金的塑性变形行为提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simultaneously enhancing strength and plasticity via direct ageing in additive manufactured Al–Ni–Sc–Zr alloys

Simultaneously enhancing strength and plasticity via direct ageing in additive manufactured Al–Ni–Sc–Zr alloys
Eutectic Al alloys processed by laser powder bed fusion (LPBF) frequently display metastable cellular structures. The cells are susceptible to decomposition into nanoparticles during ageing. Furthermore, supersaturated solutes can result in additional precipitation during the ageing process. The complicated microstructure evolution observed in LPBF eutectic Al alloys necessitates a comprehensive investigation into their ageing behaviour, to identify the optimal strength and plasticity. Consequently, this study presents a systematic examination of the impact of direct ageing on microstructure evolution in an LPBF Al‒Ni‒Sc‒Zr alloy, analysing associated changes in strength and plasticity. The optimal ageing parameters for strength and plasticity are determined. The results demonstrate that the reduction in strength resulting from cell decomposition can be offset by the strengthening provided by nanoparticles formed due to cell wall spheroidisation and additional supersaturated solute precipitation, achieving excellent yield strength. Furthermore, the transformation of cells into nanoparticles significantly enhances the plasticity by increasing non-uniform strain, which is not well explained by the conventional work hardening theory. A detailed investigation suggests that direct ageing can alleviate dislocation pile-up and strain localisation around cell walls, and reduce the tendency for crack propagation along melt pool boundaries, resulting in a significant increase in non-uniform strain and ultimately, excellent tensile plasticity. This study demonstrates that direct ageing is an effective strategy for simultaneously enhancing the strength and plasticity of LPBF Al–Ni based alloys. The proposed plasticity mechanism offers a new insight into the plastic deformation behaviour of LPBF eutectic Al alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信