无摩擦接触力学的VEM-Nitsche全离散多边形格式

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Mohamed Laaziri, Roland Masson
{"title":"无摩擦接触力学的VEM-Nitsche全离散多边形格式","authors":"Mohamed Laaziri, Roland Masson","doi":"10.1137/24m1660218","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 81-102, February 2025. <br/> Abstract. This work targets the discretization of contact-mechanics accounting for small strains, linear elastic constitutive laws, and fractures or faults represented as a network of co-dimension one planar interfaces. This type of model coupled with Darcy flow plays an important role typically for the simulation of fault reactivation by fluid injection in geological storage or the hydraulic fracture stimulation in enhanced geothermal systems. To simplify the presentation, a frictionless contact behavior at matrix fracture interfaces is considered, although the scheme developed in this work readily extends to more complex contact models such as the Mohr–Coulomb friction. To account for the geometrical complexity of subsurface, our discretization is based on the first order virtual element method (VEM), which generalizes the [math] finite element method to polytopal meshes. Following previous works in the finite element framework, the contact conditions are enforced in a weak sense using Nitsche’s formulation based on additional consistent penalization terms. We perform, in a fully discrete framework, the well-posedness and convergence analysis showing an optimal first order error estimate with minimal regularity assumptions. Numerical experiments confirm our theoretical findings and exhibit the good behavior of the nonlinear semismooth Newton solver.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"30 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VEM-Nitsche Fully Discrete Polytopal Scheme for Frictionless Contact-Mechanics\",\"authors\":\"Mohamed Laaziri, Roland Masson\",\"doi\":\"10.1137/24m1660218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 81-102, February 2025. <br/> Abstract. This work targets the discretization of contact-mechanics accounting for small strains, linear elastic constitutive laws, and fractures or faults represented as a network of co-dimension one planar interfaces. This type of model coupled with Darcy flow plays an important role typically for the simulation of fault reactivation by fluid injection in geological storage or the hydraulic fracture stimulation in enhanced geothermal systems. To simplify the presentation, a frictionless contact behavior at matrix fracture interfaces is considered, although the scheme developed in this work readily extends to more complex contact models such as the Mohr–Coulomb friction. To account for the geometrical complexity of subsurface, our discretization is based on the first order virtual element method (VEM), which generalizes the [math] finite element method to polytopal meshes. Following previous works in the finite element framework, the contact conditions are enforced in a weak sense using Nitsche’s formulation based on additional consistent penalization terms. We perform, in a fully discrete framework, the well-posedness and convergence analysis showing an optimal first order error estimate with minimal regularity assumptions. Numerical experiments confirm our theoretical findings and exhibit the good behavior of the nonlinear semismooth Newton solver.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1660218\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1660218","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第1期,第81-102页,2025年2月。摘要。这项工作的目标是接触力学的离散化,考虑到小应变,线弹性本构律,以及以共维平面界面网络表示的断裂或断层。这类模型与达西渗流相结合,在模拟地质储层中流体注入断层活化或增强型地热系统中的水力压裂增产中发挥着重要作用。为了简化表述,考虑了基体断裂界面处的无摩擦接触行为,尽管在这项工作中开发的方案很容易扩展到更复杂的接触模型,如莫尔-库仑摩擦。考虑到地下的几何复杂性,我们的离散化是基于一阶虚元法(VEM),它将[数学]有限元方法推广到多边形网格。在有限元框架中的先前工作之后,使用基于附加一致惩罚条款的Nitsche公式在弱意义上强制执行接触条件。我们在一个完全离散的框架中进行了适定性和收敛性分析,显示了具有最小正则性假设的最优一阶误差估计。数值实验证实了我们的理论发现,并证明了非线性半光滑牛顿求解器的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VEM-Nitsche Fully Discrete Polytopal Scheme for Frictionless Contact-Mechanics
SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 81-102, February 2025.
Abstract. This work targets the discretization of contact-mechanics accounting for small strains, linear elastic constitutive laws, and fractures or faults represented as a network of co-dimension one planar interfaces. This type of model coupled with Darcy flow plays an important role typically for the simulation of fault reactivation by fluid injection in geological storage or the hydraulic fracture stimulation in enhanced geothermal systems. To simplify the presentation, a frictionless contact behavior at matrix fracture interfaces is considered, although the scheme developed in this work readily extends to more complex contact models such as the Mohr–Coulomb friction. To account for the geometrical complexity of subsurface, our discretization is based on the first order virtual element method (VEM), which generalizes the [math] finite element method to polytopal meshes. Following previous works in the finite element framework, the contact conditions are enforced in a weak sense using Nitsche’s formulation based on additional consistent penalization terms. We perform, in a fully discrete framework, the well-posedness and convergence analysis showing an optimal first order error estimate with minimal regularity assumptions. Numerical experiments confirm our theoretical findings and exhibit the good behavior of the nonlinear semismooth Newton solver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信