{"title":"ct篡位:一种基于细胞感知变压器的不确定性网络,用于使用整个幻灯片图像进行生存预测","authors":"Zhihao Tang;Lin Yang;Zongyi Chen;Li Liu;Chaozhuo Li;Ruanqi Chen;Xi Zhang;Qingfeng Zheng","doi":"10.1109/TMI.2025.3526848","DOIUrl":null,"url":null,"abstract":"Image-based survival prediction through deep learning techniques represents a burgeoning frontier aimed at augmenting the diagnostic capabilities of pathologists. However, directly applying existing deep learning models to survival prediction may not be a panacea due to the inherent complexity and sophistication of whole slide images (WSIs). The intricate nature of high-resolution WSIs, characterized by sophisticated patterns and inherent noise, presents significant challenges in terms of effectiveness and trustworthiness. In this paper, we propose CTUSurv, a novel survival prediction model designed to simultaneously capture cell-to-cell and cell-to-microenvironment interactions, complemented by a region-based uncertainty estimation framework to assess the reliability of survival predictions. Our approach incorporates an innovative region sampling strategy to extract task-relevant, informative regions from high-resolution WSIs. To address the challenges posed by sophisticated biological patterns, a cell-aware encoding module is integrated to model the interactions among biological entities. Furthermore, CTUSurv includes a novel aleatoric uncertainty estimation module to provide fine-grained uncertainty scores at the region level. Extensive evaluations across four datasets demonstrate the superiority of our proposed approach in terms of both predictive accuracy and reliability.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 4","pages":"1750-1764"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CTUSurv: A Cell-Aware Transformer-Based Network With Uncertainty for Survival Prediction Using Whole Slide Images\",\"authors\":\"Zhihao Tang;Lin Yang;Zongyi Chen;Li Liu;Chaozhuo Li;Ruanqi Chen;Xi Zhang;Qingfeng Zheng\",\"doi\":\"10.1109/TMI.2025.3526848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image-based survival prediction through deep learning techniques represents a burgeoning frontier aimed at augmenting the diagnostic capabilities of pathologists. However, directly applying existing deep learning models to survival prediction may not be a panacea due to the inherent complexity and sophistication of whole slide images (WSIs). The intricate nature of high-resolution WSIs, characterized by sophisticated patterns and inherent noise, presents significant challenges in terms of effectiveness and trustworthiness. In this paper, we propose CTUSurv, a novel survival prediction model designed to simultaneously capture cell-to-cell and cell-to-microenvironment interactions, complemented by a region-based uncertainty estimation framework to assess the reliability of survival predictions. Our approach incorporates an innovative region sampling strategy to extract task-relevant, informative regions from high-resolution WSIs. To address the challenges posed by sophisticated biological patterns, a cell-aware encoding module is integrated to model the interactions among biological entities. Furthermore, CTUSurv includes a novel aleatoric uncertainty estimation module to provide fine-grained uncertainty scores at the region level. Extensive evaluations across four datasets demonstrate the superiority of our proposed approach in terms of both predictive accuracy and reliability.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 4\",\"pages\":\"1750-1764\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10834512/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10834512/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CTUSurv: A Cell-Aware Transformer-Based Network With Uncertainty for Survival Prediction Using Whole Slide Images
Image-based survival prediction through deep learning techniques represents a burgeoning frontier aimed at augmenting the diagnostic capabilities of pathologists. However, directly applying existing deep learning models to survival prediction may not be a panacea due to the inherent complexity and sophistication of whole slide images (WSIs). The intricate nature of high-resolution WSIs, characterized by sophisticated patterns and inherent noise, presents significant challenges in terms of effectiveness and trustworthiness. In this paper, we propose CTUSurv, a novel survival prediction model designed to simultaneously capture cell-to-cell and cell-to-microenvironment interactions, complemented by a region-based uncertainty estimation framework to assess the reliability of survival predictions. Our approach incorporates an innovative region sampling strategy to extract task-relevant, informative regions from high-resolution WSIs. To address the challenges posed by sophisticated biological patterns, a cell-aware encoding module is integrated to model the interactions among biological entities. Furthermore, CTUSurv includes a novel aleatoric uncertainty estimation module to provide fine-grained uncertainty scores at the region level. Extensive evaluations across four datasets demonstrate the superiority of our proposed approach in terms of both predictive accuracy and reliability.