结合计算机断层扫描、计算流体力学和离散元法研究多孔沥青混凝土在渗流过程中的堵塞演化

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Bo Li, Yunpeng Zhang, Dingbang Wei, Tengfei Yao, Yongping Hu, Hui Dou
{"title":"结合计算机断层扫描、计算流体力学和离散元法研究多孔沥青混凝土在渗流过程中的堵塞演化","authors":"Bo Li, Yunpeng Zhang, Dingbang Wei, Tengfei Yao, Yongping Hu, Hui Dou","doi":"10.1111/mice.13419","DOIUrl":null,"url":null,"abstract":"The longevity of porous asphalt pavement is inevitably compromised by the clogging of voids by various particles, leading to a degradation in its drainage function. Numerical simulations with real pore structures were used to investigate the clogging behavior of porous asphalt concrete (PAC) to clearly and intuitively understand its void clogging process. In this study, a three-dimensional model of the real void was created by computed tomography scanning. The change before and after void clogging of PAC was characterized by seepage pressure and seepage velocity in the seepage field. The computational fluid dynamics-discrete element method coupling method was used to visually describe the dynamic evolution of clogging particles in porous asphalt voids. Findings reveal that the most influential particle size for clogging in PAC-13 with 18% and 20% porosity ranged between 0.15 and 0.6 mm. In contrast, for PAC-13 with 25% porosity, the sensitive size was 0.3–1.18 mm. When clogging occurred, large particles predominantly obstructed the void inlets, prompting a refinement in the void structure. Subsequent particles either traversed the void, accumulating at the entrances of finer voids, or filled up progressively, leading to eventual clogging. Small particles either exited directly through the voids or accumulated in the bends of the voids, making the voids clogged directly. Consequently, the clogging behavior of porous asphalt was classified into three types: surface-filling clogging, void refining filter clogging, and void bending or semi-connecting clogging. These findings provide a scientific basis for optimizing PAC design and developing conservation strategies.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"3 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of clogging of porous asphalt concrete in the seepage process through integration of computer tomography, computational fluid dynamics, and discrete element method\",\"authors\":\"Bo Li, Yunpeng Zhang, Dingbang Wei, Tengfei Yao, Yongping Hu, Hui Dou\",\"doi\":\"10.1111/mice.13419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The longevity of porous asphalt pavement is inevitably compromised by the clogging of voids by various particles, leading to a degradation in its drainage function. Numerical simulations with real pore structures were used to investigate the clogging behavior of porous asphalt concrete (PAC) to clearly and intuitively understand its void clogging process. In this study, a three-dimensional model of the real void was created by computed tomography scanning. The change before and after void clogging of PAC was characterized by seepage pressure and seepage velocity in the seepage field. The computational fluid dynamics-discrete element method coupling method was used to visually describe the dynamic evolution of clogging particles in porous asphalt voids. Findings reveal that the most influential particle size for clogging in PAC-13 with 18% and 20% porosity ranged between 0.15 and 0.6 mm. In contrast, for PAC-13 with 25% porosity, the sensitive size was 0.3–1.18 mm. When clogging occurred, large particles predominantly obstructed the void inlets, prompting a refinement in the void structure. Subsequent particles either traversed the void, accumulating at the entrances of finer voids, or filled up progressively, leading to eventual clogging. Small particles either exited directly through the voids or accumulated in the bends of the voids, making the voids clogged directly. Consequently, the clogging behavior of porous asphalt was classified into three types: surface-filling clogging, void refining filter clogging, and void bending or semi-connecting clogging. These findings provide a scientific basis for optimizing PAC design and developing conservation strategies.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13419\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13419","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

多孔沥青路面的使用寿命不可避免地受到各种颗粒堵塞空隙的影响,导致其排水功能下降。采用真实孔隙结构的数值模拟方法对多孔沥青混凝土(PAC)的堵塞行为进行了研究,以清晰直观地了解其孔隙堵塞过程。在本研究中,通过计算机断层扫描创建了真实空洞的三维模型。渗流场中渗流压力和渗流速度表征了PAC堵塞前后空隙的变化。采用计算流体力学-离散元法耦合方法,直观地描述了多孔沥青空隙中堵塞颗粒的动态演化过程。研究结果表明,在孔隙率为18%和20%的PAC-13中,对堵塞影响最大的粒径范围为0.15 ~ 0.6 mm。而对于孔隙率为25%的PAC-13,其敏感粒径为0.3 ~ 1.18 mm。当堵塞发生时,大颗粒主要堵塞空隙入口,促使空隙结构细化。随后的粒子要么穿过空隙,在更细的空隙入口处聚集,要么逐渐填满,最终导致堵塞。小颗粒要么直接穿过空隙,要么积聚在空隙的弯曲处,使空隙直接堵塞。因此,将多孔沥青的堵塞行为分为三种类型:表面填充堵塞、空隙精炼过滤器堵塞和空隙弯曲或半连接堵塞。这些发现为优化PAC设计和制定保护策略提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of clogging of porous asphalt concrete in the seepage process through integration of computer tomography, computational fluid dynamics, and discrete element method
The longevity of porous asphalt pavement is inevitably compromised by the clogging of voids by various particles, leading to a degradation in its drainage function. Numerical simulations with real pore structures were used to investigate the clogging behavior of porous asphalt concrete (PAC) to clearly and intuitively understand its void clogging process. In this study, a three-dimensional model of the real void was created by computed tomography scanning. The change before and after void clogging of PAC was characterized by seepage pressure and seepage velocity in the seepage field. The computational fluid dynamics-discrete element method coupling method was used to visually describe the dynamic evolution of clogging particles in porous asphalt voids. Findings reveal that the most influential particle size for clogging in PAC-13 with 18% and 20% porosity ranged between 0.15 and 0.6 mm. In contrast, for PAC-13 with 25% porosity, the sensitive size was 0.3–1.18 mm. When clogging occurred, large particles predominantly obstructed the void inlets, prompting a refinement in the void structure. Subsequent particles either traversed the void, accumulating at the entrances of finer voids, or filled up progressively, leading to eventual clogging. Small particles either exited directly through the voids or accumulated in the bends of the voids, making the voids clogged directly. Consequently, the clogging behavior of porous asphalt was classified into three types: surface-filling clogging, void refining filter clogging, and void bending or semi-connecting clogging. These findings provide a scientific basis for optimizing PAC design and developing conservation strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信