Chase Hartquist, Shu Wang, Qiaodong Cui, Wojciech Matusik, Bolei Deng, Xuanhe Zhao
{"title":"不同可拉伸网络内禀断裂能的标度律","authors":"Chase Hartquist, Shu Wang, Qiaodong Cui, Wojciech Matusik, Bolei Deng, Xuanhe Zhao","doi":"10.1103/physrevx.15.011002","DOIUrl":null,"url":null,"abstract":"Networks of interconnected materials permeate throughout nature, biology, and technology due to exceptional mechanical performance. Despite the importance of failure resistance in network design and utility, no existing physical model effectively links strand mechanics and connectivity to predict bulk fracture. Here, we reveal a scaling law that bridges these levels to predict the intrinsic fracture energy of diverse stretchable networks. Simulations and experiments demonstrate its remarkable applicability to a breadth of strand constitutive behaviors, topologies, dimensionalities, and length scales. We show that local strand rupture and nonlocal energy release contribute synergistically to the measured intrinsic fracture energy in networks. These effects coordinate such that the intrinsic fracture energy scales independent of the energy to rupture a strand; it instead depends on the strand rupture force, breaking length, and connectivity. Our scaling law establishes a physical basis for fracture of homogeneous networks with uniform strand mechanics and lattice connectivity throughout. The scaling also extends generally for fabricating tough materials from homogeneous networks across multiple length scales. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"1 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling Law for Intrinsic Fracture Energy of Diverse Stretchable Networks\",\"authors\":\"Chase Hartquist, Shu Wang, Qiaodong Cui, Wojciech Matusik, Bolei Deng, Xuanhe Zhao\",\"doi\":\"10.1103/physrevx.15.011002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks of interconnected materials permeate throughout nature, biology, and technology due to exceptional mechanical performance. Despite the importance of failure resistance in network design and utility, no existing physical model effectively links strand mechanics and connectivity to predict bulk fracture. Here, we reveal a scaling law that bridges these levels to predict the intrinsic fracture energy of diverse stretchable networks. Simulations and experiments demonstrate its remarkable applicability to a breadth of strand constitutive behaviors, topologies, dimensionalities, and length scales. We show that local strand rupture and nonlocal energy release contribute synergistically to the measured intrinsic fracture energy in networks. These effects coordinate such that the intrinsic fracture energy scales independent of the energy to rupture a strand; it instead depends on the strand rupture force, breaking length, and connectivity. Our scaling law establishes a physical basis for fracture of homogeneous networks with uniform strand mechanics and lattice connectivity throughout. The scaling also extends generally for fabricating tough materials from homogeneous networks across multiple length scales. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.011002\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Scaling Law for Intrinsic Fracture Energy of Diverse Stretchable Networks
Networks of interconnected materials permeate throughout nature, biology, and technology due to exceptional mechanical performance. Despite the importance of failure resistance in network design and utility, no existing physical model effectively links strand mechanics and connectivity to predict bulk fracture. Here, we reveal a scaling law that bridges these levels to predict the intrinsic fracture energy of diverse stretchable networks. Simulations and experiments demonstrate its remarkable applicability to a breadth of strand constitutive behaviors, topologies, dimensionalities, and length scales. We show that local strand rupture and nonlocal energy release contribute synergistically to the measured intrinsic fracture energy in networks. These effects coordinate such that the intrinsic fracture energy scales independent of the energy to rupture a strand; it instead depends on the strand rupture force, breaking length, and connectivity. Our scaling law establishes a physical basis for fracture of homogeneous networks with uniform strand mechanics and lattice connectivity throughout. The scaling also extends generally for fabricating tough materials from homogeneous networks across multiple length scales. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.