不同可拉伸网络内禀断裂能的标度律

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Chase Hartquist, Shu Wang, Qiaodong Cui, Wojciech Matusik, Bolei Deng, Xuanhe Zhao
{"title":"不同可拉伸网络内禀断裂能的标度律","authors":"Chase Hartquist, Shu Wang, Qiaodong Cui, Wojciech Matusik, Bolei Deng, Xuanhe Zhao","doi":"10.1103/physrevx.15.011002","DOIUrl":null,"url":null,"abstract":"Networks of interconnected materials permeate throughout nature, biology, and technology due to exceptional mechanical performance. Despite the importance of failure resistance in network design and utility, no existing physical model effectively links strand mechanics and connectivity to predict bulk fracture. Here, we reveal a scaling law that bridges these levels to predict the intrinsic fracture energy of diverse stretchable networks. Simulations and experiments demonstrate its remarkable applicability to a breadth of strand constitutive behaviors, topologies, dimensionalities, and length scales. We show that local strand rupture and nonlocal energy release contribute synergistically to the measured intrinsic fracture energy in networks. These effects coordinate such that the intrinsic fracture energy scales independent of the energy to rupture a strand; it instead depends on the strand rupture force, breaking length, and connectivity. Our scaling law establishes a physical basis for fracture of homogeneous networks with uniform strand mechanics and lattice connectivity throughout. The scaling also extends generally for fabricating tough materials from homogeneous networks across multiple length scales. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"1 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling Law for Intrinsic Fracture Energy of Diverse Stretchable Networks\",\"authors\":\"Chase Hartquist, Shu Wang, Qiaodong Cui, Wojciech Matusik, Bolei Deng, Xuanhe Zhao\",\"doi\":\"10.1103/physrevx.15.011002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks of interconnected materials permeate throughout nature, biology, and technology due to exceptional mechanical performance. Despite the importance of failure resistance in network design and utility, no existing physical model effectively links strand mechanics and connectivity to predict bulk fracture. Here, we reveal a scaling law that bridges these levels to predict the intrinsic fracture energy of diverse stretchable networks. Simulations and experiments demonstrate its remarkable applicability to a breadth of strand constitutive behaviors, topologies, dimensionalities, and length scales. We show that local strand rupture and nonlocal energy release contribute synergistically to the measured intrinsic fracture energy in networks. These effects coordinate such that the intrinsic fracture energy scales independent of the energy to rupture a strand; it instead depends on the strand rupture force, breaking length, and connectivity. Our scaling law establishes a physical basis for fracture of homogeneous networks with uniform strand mechanics and lattice connectivity throughout. The scaling also extends generally for fabricating tough materials from homogeneous networks across multiple length scales. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.011002\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于优异的机械性能,相互连接的材料网络渗透到整个自然、生物和技术中。尽管抗破坏能力在网络设计和使用中很重要,但目前还没有一个物理模型能有效地将股链力学和连通性联系起来,以预测整体断裂。在这里,我们揭示了一个比例定律,桥梁这些水平,以预测不同的可拉伸网络的内在断裂能量。模拟和实验证明了它对链本构行为、拓扑结构、维度和长度尺度的显著适用性。我们发现,局部链断裂和非局部能量释放对网络中测量的固有断裂能有协同作用。这些效应相互协调,使得固有断裂能量的尺度与断裂链的能量无关;相反,它取决于股断裂力,断裂长度和连接性。我们的标度定律为具有均匀链力学和晶格连通性的均匀网络的断裂建立了物理基础。该尺度也适用于从多个长度尺度的均匀网络中制造坚韧材料。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling Law for Intrinsic Fracture Energy of Diverse Stretchable Networks
Networks of interconnected materials permeate throughout nature, biology, and technology due to exceptional mechanical performance. Despite the importance of failure resistance in network design and utility, no existing physical model effectively links strand mechanics and connectivity to predict bulk fracture. Here, we reveal a scaling law that bridges these levels to predict the intrinsic fracture energy of diverse stretchable networks. Simulations and experiments demonstrate its remarkable applicability to a breadth of strand constitutive behaviors, topologies, dimensionalities, and length scales. We show that local strand rupture and nonlocal energy release contribute synergistically to the measured intrinsic fracture energy in networks. These effects coordinate such that the intrinsic fracture energy scales independent of the energy to rupture a strand; it instead depends on the strand rupture force, breaking length, and connectivity. Our scaling law establishes a physical basis for fracture of homogeneous networks with uniform strand mechanics and lattice connectivity throughout. The scaling also extends generally for fabricating tough materials from homogeneous networks across multiple length scales. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信