高岭石吸附过程中平衡硼同位素分馏及其在化学风化过程中的应用

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Yin-Chuan Li , Ya-Ru Zhou , Hai-Zhen Wei , Martin R. Palmer , Fa-Yang Guo , Yong-Hui Li , Yong-An Qi , Da-Ping Xia
{"title":"高岭石吸附过程中平衡硼同位素分馏及其在化学风化过程中的应用","authors":"Yin-Chuan Li ,&nbsp;Ya-Ru Zhou ,&nbsp;Hai-Zhen Wei ,&nbsp;Martin R. Palmer ,&nbsp;Fa-Yang Guo ,&nbsp;Yong-Hui Li ,&nbsp;Yong-An Qi ,&nbsp;Da-Ping Xia","doi":"10.1016/j.gca.2024.12.014","DOIUrl":null,"url":null,"abstract":"<div><div>The chemical weathering of continental silicates affects the global climate and the geochemical cycle of elements, and because of their significant fractionation during chemical weathering, boron isotopes have great potential to trace chemical weathering processes. However, our understanding of boron isotope fractionation in the weathering environment is limited. In this study, the equilibrium boron isotope fractionation between the kaolinite (010) surface and aqueous fluids is investigated using quantum mechanics calculations (density functional theory, DFT). On the basis of the computation of binding energy and interface-structure optimization, a three-step reaction mechanism of boron adsorption on kaolinite is proposed: i) the free hydronium ions bond to the surface hydroxyl groups of kaolinite to form water molecules at mineral surface; ii) both B(OH)<sub>3</sub> and B(OH)<sub>4</sub><sup>−</sup> replace the water molecule on the mineral surface via the coordination hydroxyl group; iii) the free hydroxyl groups capture the hydrogen ions from bridging oxygen to form free water molecules. We first verified the influence of the B-O bond length and the O-B-O angle distortions on boron isotope fractionation and observed negative correlations between the magnitude of modelled boron isotope fractionation and both the average B-O bond length and the degree of structure distortion. Comparison between theoretical and experimental results indicates that the BO<sub>4</sub> structure dominates the boron isotope fractionation at the kaolinite (010) surface. This, in turn, allows for a more detailed understanding of boron isotope fractionation in the surface weathering environment at different T, pH and salinity conditions.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"391 ","pages":"Pages 80-95"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equilibrium boron isotope fractionation during kaolinite adsorption and applications to chemical weathering processes\",\"authors\":\"Yin-Chuan Li ,&nbsp;Ya-Ru Zhou ,&nbsp;Hai-Zhen Wei ,&nbsp;Martin R. Palmer ,&nbsp;Fa-Yang Guo ,&nbsp;Yong-Hui Li ,&nbsp;Yong-An Qi ,&nbsp;Da-Ping Xia\",\"doi\":\"10.1016/j.gca.2024.12.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The chemical weathering of continental silicates affects the global climate and the geochemical cycle of elements, and because of their significant fractionation during chemical weathering, boron isotopes have great potential to trace chemical weathering processes. However, our understanding of boron isotope fractionation in the weathering environment is limited. In this study, the equilibrium boron isotope fractionation between the kaolinite (010) surface and aqueous fluids is investigated using quantum mechanics calculations (density functional theory, DFT). On the basis of the computation of binding energy and interface-structure optimization, a three-step reaction mechanism of boron adsorption on kaolinite is proposed: i) the free hydronium ions bond to the surface hydroxyl groups of kaolinite to form water molecules at mineral surface; ii) both B(OH)<sub>3</sub> and B(OH)<sub>4</sub><sup>−</sup> replace the water molecule on the mineral surface via the coordination hydroxyl group; iii) the free hydroxyl groups capture the hydrogen ions from bridging oxygen to form free water molecules. We first verified the influence of the B-O bond length and the O-B-O angle distortions on boron isotope fractionation and observed negative correlations between the magnitude of modelled boron isotope fractionation and both the average B-O bond length and the degree of structure distortion. Comparison between theoretical and experimental results indicates that the BO<sub>4</sub> structure dominates the boron isotope fractionation at the kaolinite (010) surface. This, in turn, allows for a more detailed understanding of boron isotope fractionation in the surface weathering environment at different T, pH and salinity conditions.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"391 \",\"pages\":\"Pages 80-95\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016703724006550\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703724006550","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

陆相硅酸盐的化学风化作用影响全球气候和元素的地球化学循环,硼同位素在化学风化过程中具有明显的分馏作用,因此对化学风化过程的追踪具有很大的潜力。然而,我们对风化环境中硼同位素分馏的认识有限。在这项研究中,利用量子力学计算(密度泛函理论,DFT)研究了高岭石(010)表面和水流体之间的平衡硼同位素分馏。在结合能计算和界面结构优化的基础上,提出了硼在高岭石上吸附的三步反应机理:1)游离水合氢离子与高岭石表面羟基结合,在矿物表面形成水分子;ii) B(OH)3和B(OH)4−通过配位羟基取代矿物表面的水分子;Iii)游离羟基从桥接氧中捕获氢离子形成自由水分子。我们首先验证了B-O键长度和O-B-O角畸变对硼同位素分馏的影响,并观察到模拟硼同位素分馏的大小与平均B-O键长度和结构畸变程度呈负相关。理论与实验结果对比表明,高岭石(010)表面硼同位素分馏以BO4结构为主。这反过来又可以更详细地了解不同温度、pH和盐度条件下地表风化环境中硼同位素的分异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equilibrium boron isotope fractionation during kaolinite adsorption and applications to chemical weathering processes
The chemical weathering of continental silicates affects the global climate and the geochemical cycle of elements, and because of their significant fractionation during chemical weathering, boron isotopes have great potential to trace chemical weathering processes. However, our understanding of boron isotope fractionation in the weathering environment is limited. In this study, the equilibrium boron isotope fractionation between the kaolinite (010) surface and aqueous fluids is investigated using quantum mechanics calculations (density functional theory, DFT). On the basis of the computation of binding energy and interface-structure optimization, a three-step reaction mechanism of boron adsorption on kaolinite is proposed: i) the free hydronium ions bond to the surface hydroxyl groups of kaolinite to form water molecules at mineral surface; ii) both B(OH)3 and B(OH)4 replace the water molecule on the mineral surface via the coordination hydroxyl group; iii) the free hydroxyl groups capture the hydrogen ions from bridging oxygen to form free water molecules. We first verified the influence of the B-O bond length and the O-B-O angle distortions on boron isotope fractionation and observed negative correlations between the magnitude of modelled boron isotope fractionation and both the average B-O bond length and the degree of structure distortion. Comparison between theoretical and experimental results indicates that the BO4 structure dominates the boron isotope fractionation at the kaolinite (010) surface. This, in turn, allows for a more detailed understanding of boron isotope fractionation in the surface weathering environment at different T, pH and salinity conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信