Tianyuan Lu, Despoina Manousaki, Lei Sun, Andrew D. Paterson
{"title":"综合蛋白质基因组学分析通过循环蛋白为1型糖尿病风险位点提供了新的解释","authors":"Tianyuan Lu, Despoina Manousaki, Lei Sun, Andrew D. Paterson","doi":"10.2337/db24-0380","DOIUrl":null,"url":null,"abstract":"Circulating proteins may be promising biomarkers or drug targets. Leveraging genome-wide association studies of type 1 diabetes (18,942 cases and 501,638 controls of European ancestry) and circulating protein abundances (10,708 European ancestry individuals), Mendelian randomization analyses were conducted to assess the associations between circulating abundances of 1,560 candidate proteins and the risk of type 1 diabetes, followed by multiple sensitivity and colocalization analyses, horizontal pleiotropy examinations, and replications. Bulk tissue and single-cell gene expression enrichment analyses were performed to explore candidate tissues and cell types for prioritized proteins. After validating Mendelian randomization assumptions and colocalization evidence, we found that genetically predicted circulating abundances of CTSH (OR=1.17 per one standard deviation increase; 95% CI:1.10-1.24), IL27RA (OR=1.13; 95% CI:1.07-1.19), SIRPG (OR=1.37; 95% CI:1.26-1.49), and PGM1 (OR=1.66; 95% CI:1.40-1.96) were associated with the risk of type 1 diabetes. These findings were consistently replicated in other cohorts. CTSH, IL27RA, and SIRPG were strongly enriched in immune system-related tissues, while PGM1 was enriched in muscle and liver tissues. Amongst immune cells, CTSH was enriched in B cells and myeloid cells, while SIRPG was enriched in T cells and natural killer cells. These proteins may be explored as biomarkers or drug targets for type 1 diabetes.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"35 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative proteogenomic analyses provide novel interpretations of type 1 diabetes risk loci through circulating proteins\",\"authors\":\"Tianyuan Lu, Despoina Manousaki, Lei Sun, Andrew D. Paterson\",\"doi\":\"10.2337/db24-0380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Circulating proteins may be promising biomarkers or drug targets. Leveraging genome-wide association studies of type 1 diabetes (18,942 cases and 501,638 controls of European ancestry) and circulating protein abundances (10,708 European ancestry individuals), Mendelian randomization analyses were conducted to assess the associations between circulating abundances of 1,560 candidate proteins and the risk of type 1 diabetes, followed by multiple sensitivity and colocalization analyses, horizontal pleiotropy examinations, and replications. Bulk tissue and single-cell gene expression enrichment analyses were performed to explore candidate tissues and cell types for prioritized proteins. After validating Mendelian randomization assumptions and colocalization evidence, we found that genetically predicted circulating abundances of CTSH (OR=1.17 per one standard deviation increase; 95% CI:1.10-1.24), IL27RA (OR=1.13; 95% CI:1.07-1.19), SIRPG (OR=1.37; 95% CI:1.26-1.49), and PGM1 (OR=1.66; 95% CI:1.40-1.96) were associated with the risk of type 1 diabetes. These findings were consistently replicated in other cohorts. CTSH, IL27RA, and SIRPG were strongly enriched in immune system-related tissues, while PGM1 was enriched in muscle and liver tissues. Amongst immune cells, CTSH was enriched in B cells and myeloid cells, while SIRPG was enriched in T cells and natural killer cells. These proteins may be explored as biomarkers or drug targets for type 1 diabetes.\",\"PeriodicalId\":11376,\"journal\":{\"name\":\"Diabetes\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2337/db24-0380\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0380","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Integrative proteogenomic analyses provide novel interpretations of type 1 diabetes risk loci through circulating proteins
Circulating proteins may be promising biomarkers or drug targets. Leveraging genome-wide association studies of type 1 diabetes (18,942 cases and 501,638 controls of European ancestry) and circulating protein abundances (10,708 European ancestry individuals), Mendelian randomization analyses were conducted to assess the associations between circulating abundances of 1,560 candidate proteins and the risk of type 1 diabetes, followed by multiple sensitivity and colocalization analyses, horizontal pleiotropy examinations, and replications. Bulk tissue and single-cell gene expression enrichment analyses were performed to explore candidate tissues and cell types for prioritized proteins. After validating Mendelian randomization assumptions and colocalization evidence, we found that genetically predicted circulating abundances of CTSH (OR=1.17 per one standard deviation increase; 95% CI:1.10-1.24), IL27RA (OR=1.13; 95% CI:1.07-1.19), SIRPG (OR=1.37; 95% CI:1.26-1.49), and PGM1 (OR=1.66; 95% CI:1.40-1.96) were associated with the risk of type 1 diabetes. These findings were consistently replicated in other cohorts. CTSH, IL27RA, and SIRPG were strongly enriched in immune system-related tissues, while PGM1 was enriched in muscle and liver tissues. Amongst immune cells, CTSH was enriched in B cells and myeloid cells, while SIRPG was enriched in T cells and natural killer cells. These proteins may be explored as biomarkers or drug targets for type 1 diabetes.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.