7颗XBi2Te4 (X=Ge, Sn, Pb)嵌入MnBi2Te4实现层间铁磁性和量子反常霍尔效应

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ruixia Yang, Xiaoxiao Man, Jiahui Peng, Jingjing Zhang, Fei Wang, Fang Wang, Huisheng Zhang, Xiaohong Xu
{"title":"7颗XBi2Te4 (X=Ge, Sn, Pb)嵌入MnBi2Te4实现层间铁磁性和量子反常霍尔效应","authors":"Ruixia Yang, Xiaoxiao Man, Jiahui Peng, Jingjing Zhang, Fei Wang, Fang Wang, Huisheng Zhang, Xiaohong Xu","doi":"10.1038/s41535-024-00723-6","DOIUrl":null,"url":null,"abstract":"<p>Realizing the quantum anomalous Hall effect (QAHE) at high temperatures remains a significant challenge in condensed matter physics. MnBi<sub>2</sub>Te<sub>4</sub>, an intrinsic magnetic topological insulator, presents a promising platform for QAHE. However, its inherent interlayer antiferromagnetic coupling hinders practical realization at high temperatures. In this study, we propose a novel approach to achieve interlayer ferromagnetic (FM) coupling in MBT bilayer by intercalating the septuple-layer of topological insulators XBi<sub>2</sub>Te<sub>4</sub> (X=Ge, Sn, Pb). Using first-principles calculations, we demonstrate that the <i>p</i><sub><i>z</i></sub> orbital of the X atom mediates interactions between interlayer Mn atoms, enabling FM coupling. Monte Carlo simulations predict a magnetic transition temperature of 38 K for the MnBi<sub>2</sub>Te<sub>4</sub>/PbBi<sub>2</sub>Te<sub>4</sub>/MnBi<sub>2</sub>Te<sub>4</sub> heterostructure. Our band structure and topological analyses confirm the preservation of QAHE in all MnBi<sub>2</sub>Te<sub>4</sub>/XBi<sub>2</sub>Te<sub>4</sub>/MnBi<sub>2</sub>Te<sub>4</sub> heterostructures, while the MnBi<sub>2</sub>Te<sub>4</sub>/PbBi<sub>2</sub>Te<sub>4</sub>/MnBi<sub>2</sub>Te<sub>4</sub> heterostructure exhibits a topological band gap of 72 meV, significantly exceeding that of the pure MnBi<sub>2</sub>Te<sub>4</sub> bilayer. Furthermore, a continuum model is developed to elucidate the underlying mechanism of the nontrivial topological states. Our work provides a practical pathway to achieving interlayer FM coupling in MnBi<sub>2</sub>Te<sub>4</sub> bilayers, paving the way for high-temperature QAHE and advancing the development of magnetic topological insulators for quantum and spintronic applications.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"117 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Septuple XBi2Te4 (X=Ge, Sn, Pb) intercalated MnBi2Te4 for realizing interlayer ferromagnetism and quantum anomalous hall effect\",\"authors\":\"Ruixia Yang, Xiaoxiao Man, Jiahui Peng, Jingjing Zhang, Fei Wang, Fang Wang, Huisheng Zhang, Xiaohong Xu\",\"doi\":\"10.1038/s41535-024-00723-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Realizing the quantum anomalous Hall effect (QAHE) at high temperatures remains a significant challenge in condensed matter physics. MnBi<sub>2</sub>Te<sub>4</sub>, an intrinsic magnetic topological insulator, presents a promising platform for QAHE. However, its inherent interlayer antiferromagnetic coupling hinders practical realization at high temperatures. In this study, we propose a novel approach to achieve interlayer ferromagnetic (FM) coupling in MBT bilayer by intercalating the septuple-layer of topological insulators XBi<sub>2</sub>Te<sub>4</sub> (X=Ge, Sn, Pb). Using first-principles calculations, we demonstrate that the <i>p</i><sub><i>z</i></sub> orbital of the X atom mediates interactions between interlayer Mn atoms, enabling FM coupling. Monte Carlo simulations predict a magnetic transition temperature of 38 K for the MnBi<sub>2</sub>Te<sub>4</sub>/PbBi<sub>2</sub>Te<sub>4</sub>/MnBi<sub>2</sub>Te<sub>4</sub> heterostructure. Our band structure and topological analyses confirm the preservation of QAHE in all MnBi<sub>2</sub>Te<sub>4</sub>/XBi<sub>2</sub>Te<sub>4</sub>/MnBi<sub>2</sub>Te<sub>4</sub> heterostructures, while the MnBi<sub>2</sub>Te<sub>4</sub>/PbBi<sub>2</sub>Te<sub>4</sub>/MnBi<sub>2</sub>Te<sub>4</sub> heterostructure exhibits a topological band gap of 72 meV, significantly exceeding that of the pure MnBi<sub>2</sub>Te<sub>4</sub> bilayer. Furthermore, a continuum model is developed to elucidate the underlying mechanism of the nontrivial topological states. Our work provides a practical pathway to achieving interlayer FM coupling in MnBi<sub>2</sub>Te<sub>4</sub> bilayers, paving the way for high-temperature QAHE and advancing the development of magnetic topological insulators for quantum and spintronic applications.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00723-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00723-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在高温条件下实现量子反常霍尔效应(QAHE)仍然是凝聚态物理学的一项重大挑战。MnBi2Te4 是一种本征磁性拓扑绝缘体,为 QAHE 提供了一个前景广阔的平台。然而,其固有的层间反铁磁耦合阻碍了高温下的实际实现。在本研究中,我们提出了一种新方法,通过插层拓扑绝缘体 XBi2Te4(X=锗、锡、铅)的七重层,在 MBT 双层中实现层间铁磁(FM)耦合。通过第一原理计算,我们证明了 X 原子的 pz 轨道介导了层间锰原子之间的相互作用,从而实现了调频耦合。蒙特卡洛模拟预测 MnBi2Te4/PbBi2Te4/MnBi2Te4 异质结构的磁转变温度为 38 K。我们的带状结构和拓扑分析证实,所有 MnBi2Te4/XBi2Te4/MnBi2Te4 异质结构都保留了 QAHE,而 MnBi2Te4/PbBi2Te4/MnBi2Te4 异质结构的拓扑带隙为 72 meV,大大超过了纯 MnBi2Te4 双层结构。此外,我们还建立了一个连续体模型,以阐明非难拓扑态的基本机制。我们的工作为在 MnBi2Te4 双层膜中实现层间调频耦合提供了一条切实可行的途径,为高温 QAHE 铺平了道路,并推动了用于量子和自旋电子应用的磁性拓扑绝缘体的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Septuple XBi2Te4 (X=Ge, Sn, Pb) intercalated MnBi2Te4 for realizing interlayer ferromagnetism and quantum anomalous hall effect

Septuple XBi2Te4 (X=Ge, Sn, Pb) intercalated MnBi2Te4 for realizing interlayer ferromagnetism and quantum anomalous hall effect

Realizing the quantum anomalous Hall effect (QAHE) at high temperatures remains a significant challenge in condensed matter physics. MnBi2Te4, an intrinsic magnetic topological insulator, presents a promising platform for QAHE. However, its inherent interlayer antiferromagnetic coupling hinders practical realization at high temperatures. In this study, we propose a novel approach to achieve interlayer ferromagnetic (FM) coupling in MBT bilayer by intercalating the septuple-layer of topological insulators XBi2Te4 (X=Ge, Sn, Pb). Using first-principles calculations, we demonstrate that the pz orbital of the X atom mediates interactions between interlayer Mn atoms, enabling FM coupling. Monte Carlo simulations predict a magnetic transition temperature of 38 K for the MnBi2Te4/PbBi2Te4/MnBi2Te4 heterostructure. Our band structure and topological analyses confirm the preservation of QAHE in all MnBi2Te4/XBi2Te4/MnBi2Te4 heterostructures, while the MnBi2Te4/PbBi2Te4/MnBi2Te4 heterostructure exhibits a topological band gap of 72 meV, significantly exceeding that of the pure MnBi2Te4 bilayer. Furthermore, a continuum model is developed to elucidate the underlying mechanism of the nontrivial topological states. Our work provides a practical pathway to achieving interlayer FM coupling in MnBi2Te4 bilayers, paving the way for high-temperature QAHE and advancing the development of magnetic topological insulators for quantum and spintronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信