医生现在要给你测谎。

Npj health systems Pub Date : 2024-01-01 Epub Date: 2024-12-05 DOI:10.1038/s44401-024-00001-4
James Anibal, Jasmine Gunkel, Shaheen Awan, Hannah Huth, Hang Nguyen, Tram Le, Jean-Christophe Bélisle-Pipon, Micah Boyer, Lindsey Hazen, Yael Bensoussan, David Clifton, Bradford Wood
{"title":"医生现在要给你测谎。","authors":"James Anibal, Jasmine Gunkel, Shaheen Awan, Hannah Huth, Hang Nguyen, Tram Le, Jean-Christophe Bélisle-Pipon, Micah Boyer, Lindsey Hazen, Yael Bensoussan, David Clifton, Bradford Wood","doi":"10.1038/s44401-024-00001-4","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) methods have been proposed for the prediction of social behaviors that could be reasonably understood from patient-reported information. This raises novel ethical concerns about respect, privacy, and control over patient data. Ethical concerns surrounding clinical AI systems for social behavior verification can be divided into two main categories: (1) the potential for inaccuracies/biases within such systems, and (2) the impact on trust in patient-provider relationships with the introduction of automated AI systems for \"fact-checking\", particularly in cases where the data/models may contradict the patient. Additionally, this report simulated the misuse of a verification system using patient voice samples and identified a potential LLM bias against patient-reported information in favor of multi-dimensional data and the outputs of other AI methods (i.e., \"AI self-trust\"). Finally, recommendations were presented for mitigating the risk that AI verification methods will cause harm to patients or undermine the purpose of the healthcare system.</p>","PeriodicalId":520349,"journal":{"name":"Npj health systems","volume":"1 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698301/pdf/","citationCount":"0","resultStr":"{\"title\":\"The doctor will polygraph you now.\",\"authors\":\"James Anibal, Jasmine Gunkel, Shaheen Awan, Hannah Huth, Hang Nguyen, Tram Le, Jean-Christophe Bélisle-Pipon, Micah Boyer, Lindsey Hazen, Yael Bensoussan, David Clifton, Bradford Wood\",\"doi\":\"10.1038/s44401-024-00001-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) methods have been proposed for the prediction of social behaviors that could be reasonably understood from patient-reported information. This raises novel ethical concerns about respect, privacy, and control over patient data. Ethical concerns surrounding clinical AI systems for social behavior verification can be divided into two main categories: (1) the potential for inaccuracies/biases within such systems, and (2) the impact on trust in patient-provider relationships with the introduction of automated AI systems for \\\"fact-checking\\\", particularly in cases where the data/models may contradict the patient. Additionally, this report simulated the misuse of a verification system using patient voice samples and identified a potential LLM bias against patient-reported information in favor of multi-dimensional data and the outputs of other AI methods (i.e., \\\"AI self-trust\\\"). Finally, recommendations were presented for mitigating the risk that AI verification methods will cause harm to patients or undermine the purpose of the healthcare system.</p>\",\"PeriodicalId\":520349,\"journal\":{\"name\":\"Npj health systems\",\"volume\":\"1 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npj health systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44401-024-00001-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npj health systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44401-024-00001-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)方法已被提出用于预测可以从患者报告的信息中合理理解的社会行为。这引发了关于尊重、隐私和控制患者数据的新的伦理问题。围绕用于社会行为验证的临床人工智能系统的伦理问题可以分为两大类:(1)此类系统中存在不准确/偏见的可能性;(2)引入用于“事实核查”的自动化人工智能系统对医患关系信任的影响,特别是在数据/模型可能与患者相矛盾的情况下。此外,本报告模拟了使用患者语音样本的验证系统的滥用,并确定了对患者报告信息的潜在LLM偏见,支持多维数据和其他人工智能方法的输出(即“人工智能自信”)。最后,提出了降低人工智能验证方法对患者造成伤害或破坏医疗保健系统目的的风险的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The doctor will polygraph you now.

Artificial intelligence (AI) methods have been proposed for the prediction of social behaviors that could be reasonably understood from patient-reported information. This raises novel ethical concerns about respect, privacy, and control over patient data. Ethical concerns surrounding clinical AI systems for social behavior verification can be divided into two main categories: (1) the potential for inaccuracies/biases within such systems, and (2) the impact on trust in patient-provider relationships with the introduction of automated AI systems for "fact-checking", particularly in cases where the data/models may contradict the patient. Additionally, this report simulated the misuse of a verification system using patient voice samples and identified a potential LLM bias against patient-reported information in favor of multi-dimensional data and the outputs of other AI methods (i.e., "AI self-trust"). Finally, recommendations were presented for mitigating the risk that AI verification methods will cause harm to patients or undermine the purpose of the healthcare system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信