Tianyu Qiu, Cheng Liu, Yan Ding, Lixiang Wang, Yuhui Liu, Yang Sun, Zhengsheng Mao, Peng Chen, Hao Sun, Feng Chen, Yue Cao
{"title":"基于sers的百草枯中毒病例简化分析:绕过复杂的抗氧化传感器预处理。","authors":"Tianyu Qiu, Cheng Liu, Yan Ding, Lixiang Wang, Yuhui Liu, Yang Sun, Zhengsheng Mao, Peng Chen, Hao Sun, Feng Chen, Yue Cao","doi":"10.1016/j.saa.2024.125593","DOIUrl":null,"url":null,"abstract":"<p><p>Applying antioxidant coating materials to prepare surface-enhanced Raman spectroscopy (SERS) sensing substrates can effectively enhance the sensitivity and stability for the analysis of molecules. In this study, we have leveraged SERS to develop an innovative sensor for the swift identification of Paraquat (PQ), enabling on-site detection of this herbicide. The newly devised sensor distinguishes itself through its exceptional oxidation resistance. This resistance is attributed to the physical properties of the nanoparticles, specifically the silver shell coating and loading on the molybdenum disulfide (MoS<sub>2</sub>). By the creation of \"hot spots\" of the composite nanoparticles (Ag@AuBPs on flower-like MoS<sub>2</sub>), the kit achieves a remarkably low detection limit as low as 1.0 × 10<sup>-10</sup> M for Paraquat in lake water, soil, and clothing samples, allowing for rapid and direct identification of PQ in complex environments.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"329 ","pages":"125593"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SERS-based simplified analysis of paraquat in poisoning cases: Bypassing complicated pretreatment with antioxidant sensor.\",\"authors\":\"Tianyu Qiu, Cheng Liu, Yan Ding, Lixiang Wang, Yuhui Liu, Yang Sun, Zhengsheng Mao, Peng Chen, Hao Sun, Feng Chen, Yue Cao\",\"doi\":\"10.1016/j.saa.2024.125593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Applying antioxidant coating materials to prepare surface-enhanced Raman spectroscopy (SERS) sensing substrates can effectively enhance the sensitivity and stability for the analysis of molecules. In this study, we have leveraged SERS to develop an innovative sensor for the swift identification of Paraquat (PQ), enabling on-site detection of this herbicide. The newly devised sensor distinguishes itself through its exceptional oxidation resistance. This resistance is attributed to the physical properties of the nanoparticles, specifically the silver shell coating and loading on the molybdenum disulfide (MoS<sub>2</sub>). By the creation of \\\"hot spots\\\" of the composite nanoparticles (Ag@AuBPs on flower-like MoS<sub>2</sub>), the kit achieves a remarkably low detection limit as low as 1.0 × 10<sup>-10</sup> M for Paraquat in lake water, soil, and clothing samples, allowing for rapid and direct identification of PQ in complex environments.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"329 \",\"pages\":\"125593\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2024.125593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
SERS-based simplified analysis of paraquat in poisoning cases: Bypassing complicated pretreatment with antioxidant sensor.
Applying antioxidant coating materials to prepare surface-enhanced Raman spectroscopy (SERS) sensing substrates can effectively enhance the sensitivity and stability for the analysis of molecules. In this study, we have leveraged SERS to develop an innovative sensor for the swift identification of Paraquat (PQ), enabling on-site detection of this herbicide. The newly devised sensor distinguishes itself through its exceptional oxidation resistance. This resistance is attributed to the physical properties of the nanoparticles, specifically the silver shell coating and loading on the molybdenum disulfide (MoS2). By the creation of "hot spots" of the composite nanoparticles (Ag@AuBPs on flower-like MoS2), the kit achieves a remarkably low detection limit as low as 1.0 × 10-10 M for Paraquat in lake water, soil, and clothing samples, allowing for rapid and direct identification of PQ in complex environments.