LncLSTA:一个多功能的预测器,通过长期、短期的关注揭示lncrna的亚细胞定位。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-11-22 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae173
Kai Wang, Yueming Hu, Sida Li, Ming Chen, Zhong Li
{"title":"LncLSTA:一个多功能的预测器,通过长期、短期的关注揭示lncrna的亚细胞定位。","authors":"Kai Wang, Yueming Hu, Sida Li, Ming Chen, Zhong Li","doi":"10.1093/bioadv/vbae173","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Much evidence suggests that the subcellular localization of long-stranded noncoding RNAs (LncRNAs) provides key insights for the study of their biological function.</p><p><strong>Results: </strong>This study proposes a novel deep learning framework, LncLSTA, designed for predicting the subcellular localization of LncRNAs. It firstly exploits LncRNA sequence, electron-ion interaction pseudopotentials, and nucleotide chemical property as feature inputs. Departing from conventional <i>k</i>-mer approaches, this model uses a set of 1D convolutional and maxpooling operations for dynamical feature aggregation. Furthermore, LncLSTA integrates a long-short term attention module with a bidirectional long and short term memory network to comprehensively extract sequence information. In addition, it incorporates a TextCNN module to enhance accuracy and robustness in subcellular localization tasks. Experimental results demonstrate the efficacy of LncLSTA, showcasing its superior performance compared to other state-of-the-art methods. Notably, LncLSTA exhibits the transfer learning capability, extending its utility to predict the subcellular localization prediction of mRNAs, while maintaining consistently satisfactory prediction results. This research contributes valuable insights into understanding the biological functions of LncRNAs through subcellular localization, emphasizing the potential of deep learning approaches in advancing RNA-related studies.</p><p><strong>Availability and implementation: </strong>The source code is publicly available at https://bis.zju.edu.cn/LncLSTA.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae173"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700581/pdf/","citationCount":"0","resultStr":"{\"title\":\"LncLSTA: a versatile predictor unveiling subcellular localization of lncRNAs through long-short term attention.\",\"authors\":\"Kai Wang, Yueming Hu, Sida Li, Ming Chen, Zhong Li\",\"doi\":\"10.1093/bioadv/vbae173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Much evidence suggests that the subcellular localization of long-stranded noncoding RNAs (LncRNAs) provides key insights for the study of their biological function.</p><p><strong>Results: </strong>This study proposes a novel deep learning framework, LncLSTA, designed for predicting the subcellular localization of LncRNAs. It firstly exploits LncRNA sequence, electron-ion interaction pseudopotentials, and nucleotide chemical property as feature inputs. Departing from conventional <i>k</i>-mer approaches, this model uses a set of 1D convolutional and maxpooling operations for dynamical feature aggregation. Furthermore, LncLSTA integrates a long-short term attention module with a bidirectional long and short term memory network to comprehensively extract sequence information. In addition, it incorporates a TextCNN module to enhance accuracy and robustness in subcellular localization tasks. Experimental results demonstrate the efficacy of LncLSTA, showcasing its superior performance compared to other state-of-the-art methods. Notably, LncLSTA exhibits the transfer learning capability, extending its utility to predict the subcellular localization prediction of mRNAs, while maintaining consistently satisfactory prediction results. This research contributes valuable insights into understanding the biological functions of LncRNAs through subcellular localization, emphasizing the potential of deep learning approaches in advancing RNA-related studies.</p><p><strong>Availability and implementation: </strong>The source code is publicly available at https://bis.zju.edu.cn/LncLSTA.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbae173\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:大量证据表明,长链非编码rna (LncRNAs)的亚细胞定位为研究其生物学功能提供了关键见解。结果:本研究提出了一种新的深度学习框架LncLSTA,用于预测lncrna的亚细胞定位。它首先利用LncRNA序列、电子-离子相互作用赝势和核苷酸化学性质作为特征输入。与传统的k-mer方法不同,该模型使用一组1D卷积和maxpooling操作进行动态特征聚合。此外,LncLSTA将长短期注意模块与双向长短期记忆网络相结合,全面提取序列信息。此外,它还结合了TextCNN模块来提高亚细胞定位任务的准确性和鲁棒性。实验结果证明了LncLSTA的有效性,与其他最先进的方法相比,它具有优越的性能。值得注意的是,LncLSTA表现出迁移学习能力,将其应用于预测mrna的亚细胞定位预测,同时保持一致的令人满意的预测结果。这项研究通过亚细胞定位为理解LncRNAs的生物学功能提供了有价值的见解,强调了深度学习方法在推进rna相关研究中的潜力。可用性和实现:源代码可在https://bis.zju.edu.cn/LncLSTA上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LncLSTA: a versatile predictor unveiling subcellular localization of lncRNAs through long-short term attention.

Motivation: Much evidence suggests that the subcellular localization of long-stranded noncoding RNAs (LncRNAs) provides key insights for the study of their biological function.

Results: This study proposes a novel deep learning framework, LncLSTA, designed for predicting the subcellular localization of LncRNAs. It firstly exploits LncRNA sequence, electron-ion interaction pseudopotentials, and nucleotide chemical property as feature inputs. Departing from conventional k-mer approaches, this model uses a set of 1D convolutional and maxpooling operations for dynamical feature aggregation. Furthermore, LncLSTA integrates a long-short term attention module with a bidirectional long and short term memory network to comprehensively extract sequence information. In addition, it incorporates a TextCNN module to enhance accuracy and robustness in subcellular localization tasks. Experimental results demonstrate the efficacy of LncLSTA, showcasing its superior performance compared to other state-of-the-art methods. Notably, LncLSTA exhibits the transfer learning capability, extending its utility to predict the subcellular localization prediction of mRNAs, while maintaining consistently satisfactory prediction results. This research contributes valuable insights into understanding the biological functions of LncRNAs through subcellular localization, emphasizing the potential of deep learning approaches in advancing RNA-related studies.

Availability and implementation: The source code is publicly available at https://bis.zju.edu.cn/LncLSTA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信