使用虚拟幻影来评估治疗计划系统执行磁共振图像失真校正的能力。

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Rogelio Manuel Diaz Moreno, Gonzalo Nuñez, C Daniel Venencia, Roberto A Isoardi, María José Almada
{"title":"使用虚拟幻影来评估治疗计划系统执行磁共振图像失真校正的能力。","authors":"Rogelio Manuel Diaz Moreno, Gonzalo Nuñez, C Daniel Venencia, Roberto A Isoardi, María José Almada","doi":"10.1007/s13246-024-01515-9","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment Planning Systems (TPS) offer algorithms for distortion correction (DC) of Magnetic Resonance (MR) images, whose performances demand proper evaluation. This work develops a procedure using a virtual phantom to quantitatively assess a TPS DC algorithm. Variations of the digital Brainweb MR study were created by introducing known distortions and Control Points (CPs). A synthetic Computed Tomography (sCT) study was created based upon the MR study. Elements TPS (Brainlab, Munich, Germany) was used to apply DC to the MR images, choosing the sCT as the gold standard. Deviations in the CP locations between the original images, the distorted images and the corrected images were calculated. Structural Similarity Metric (SSIM) tests were applied for further assessment of image corrections. The introduced distortion deviated the CP locations by a median (range) value of 1.8 (0.2-4.4) mm. After DC was applied, these values were reduced to 0.6 (0.1-1.9) mm. Correction of the original image deviated the CP locations by 0.2 (0-1.1) mm. The SSIM comparisons between the original and the distorted images yielded values of 0.23 and 0.67 before and after DC, respectively. The SSIM comparison of the original study, before and after DC, yielded a value of 0.97. The proposed methodology using a virtual phantom with CPs can be used to assess a TPS DC algorithm. Elements TPS effectively reduced MR distorsions below radiosurgery tolerances.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of a virtual phantom to assess the capability of a treatment planning system to perform magnetic resonance image distortion correction.\",\"authors\":\"Rogelio Manuel Diaz Moreno, Gonzalo Nuñez, C Daniel Venencia, Roberto A Isoardi, María José Almada\",\"doi\":\"10.1007/s13246-024-01515-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatment Planning Systems (TPS) offer algorithms for distortion correction (DC) of Magnetic Resonance (MR) images, whose performances demand proper evaluation. This work develops a procedure using a virtual phantom to quantitatively assess a TPS DC algorithm. Variations of the digital Brainweb MR study were created by introducing known distortions and Control Points (CPs). A synthetic Computed Tomography (sCT) study was created based upon the MR study. Elements TPS (Brainlab, Munich, Germany) was used to apply DC to the MR images, choosing the sCT as the gold standard. Deviations in the CP locations between the original images, the distorted images and the corrected images were calculated. Structural Similarity Metric (SSIM) tests were applied for further assessment of image corrections. The introduced distortion deviated the CP locations by a median (range) value of 1.8 (0.2-4.4) mm. After DC was applied, these values were reduced to 0.6 (0.1-1.9) mm. Correction of the original image deviated the CP locations by 0.2 (0-1.1) mm. The SSIM comparisons between the original and the distorted images yielded values of 0.23 and 0.67 before and after DC, respectively. The SSIM comparison of the original study, before and after DC, yielded a value of 0.97. The proposed methodology using a virtual phantom with CPs can be used to assess a TPS DC algorithm. Elements TPS effectively reduced MR distorsions below radiosurgery tolerances.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01515-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01515-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

治疗计划系统(TPS)提供了磁共振(MR)图像畸变校正(DC)的算法,其性能需要适当的评估。本工作开发了一个程序,使用虚拟幻影来定量评估TPS DC算法。通过引入已知的扭曲和控制点(CPs),创建了数字脑网MR研究的变体。合成计算机断层扫描(sCT)研究是在MR研究的基础上创建的。使用Elements TPS (Brainlab, Munich, Germany)将DC应用于MR图像,选择sCT作为金标准。计算原图像、畸变图像和校正图像之间CP位置的偏差。结构相似性度量(SSIM)测试应用于进一步评估图像校正。引入的畸变使CP位置偏离的中位数(范围)为1.8 (0.2-4.4)mm。应用DC后,这些值降至0.6 (0.1-1.9)mm。原始图像的校正使CP位置偏离0.2 (0-1.1)mm。在DC前后,原始图像与扭曲图像之间的SSIM比较分别为0.23和0.67。原始研究在DC前后的SSIM比较值为0.97。所提出的方法使用具有CPs的虚拟幻影可用于评估TPS DC算法。元素TPS有效地减少MR扭曲低于放射手术耐受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of a virtual phantom to assess the capability of a treatment planning system to perform magnetic resonance image distortion correction.

Treatment Planning Systems (TPS) offer algorithms for distortion correction (DC) of Magnetic Resonance (MR) images, whose performances demand proper evaluation. This work develops a procedure using a virtual phantom to quantitatively assess a TPS DC algorithm. Variations of the digital Brainweb MR study were created by introducing known distortions and Control Points (CPs). A synthetic Computed Tomography (sCT) study was created based upon the MR study. Elements TPS (Brainlab, Munich, Germany) was used to apply DC to the MR images, choosing the sCT as the gold standard. Deviations in the CP locations between the original images, the distorted images and the corrected images were calculated. Structural Similarity Metric (SSIM) tests were applied for further assessment of image corrections. The introduced distortion deviated the CP locations by a median (range) value of 1.8 (0.2-4.4) mm. After DC was applied, these values were reduced to 0.6 (0.1-1.9) mm. Correction of the original image deviated the CP locations by 0.2 (0-1.1) mm. The SSIM comparisons between the original and the distorted images yielded values of 0.23 and 0.67 before and after DC, respectively. The SSIM comparison of the original study, before and after DC, yielded a value of 0.97. The proposed methodology using a virtual phantom with CPs can be used to assess a TPS DC algorithm. Elements TPS effectively reduced MR distorsions below radiosurgery tolerances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信