用临床到临床可转移的机器学习模型预测和排名1型糖尿病青年糖尿病酮症酸中毒风险

IF 5.7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Craig Vandervelden, Brent Lockee, Mitchell Barnes, Erin M Tallon, David D Williams, Anna Kahkoska, Angelica Cristello Sarteau, Susana R Patton, Rona Y Sonabend, Jacob D Kohlenberg, Mark A Clements
{"title":"用临床到临床可转移的机器学习模型预测和排名1型糖尿病青年糖尿病酮症酸中毒风险","authors":"Craig Vandervelden, Brent Lockee, Mitchell Barnes, Erin M Tallon, David D Williams, Anna Kahkoska, Angelica Cristello Sarteau, Susana R Patton, Rona Y Sonabend, Jacob D Kohlenberg, Mark A Clements","doi":"10.1089/dia.2024.0484","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aim:</i></b> To use electronic health record (EHR) data to develop a scalable and transferrable model to predict 6-month risk for diabetic ketoacidosis (DKA)-related hospitalization or emergency care in youth with type 1 diabetes (T1D). <b><i>Method:</i></b> To achieve a sharable predictive model, we engineered features using EHR data mapped to the T1D Exchange Quality Improvement Collaborative's (T1DX-QI) data schema used by 60+ U.S. diabetes centers and chose a compact set of 15 features (e.g., demographics, factors related to diabetes management, etc.) to yield \"explainable AI\" predictions for DKA risk on a 6-month horizon. We used an ensemble of gradient-boosted, tree-based models trained on data collected from September 1, 2017 to November 1, 2022 (3097 unique patients; 24,638 clinical encounters) from a tertiary care pediatric diabetes clinic network in the Midwest USA. <b><i>Results:</i></b> We rank-ordered the top 10, 25, 50, and 100 highest-risk youth in an out-of-sample testing set, which yielded an average precision of 0.96, 0.81, 0.75, and 0.70, respectively. The lift of the model (relative to random selection) for the top 100 individuals is 19. The model identified average time between DKA episodes, time since the last DKA episode, and T1D duration as the top three features for predicting DKA risk. <b><i>Conclusions:</i></b> Our DKA risk model effectively predicts youths' relative risk of experiencing hospitalization for DKA and is readily deployable to other diabetes centers that map diabetes data to the T1DX-QI schema. This model may facilitate the development of targeted interventions for youths at the highest risk for DKA. Future work will add novel features such as device data, social determinants of health, and diabetes self-management behaviors.</p>","PeriodicalId":11159,"journal":{"name":"Diabetes technology & therapeutics","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting and Ranking Diabetic Ketoacidosis Risk among Youth with Type 1 Diabetes with a Clinic-to-Clinic Transferrable Machine Learning Model.\",\"authors\":\"Craig Vandervelden, Brent Lockee, Mitchell Barnes, Erin M Tallon, David D Williams, Anna Kahkoska, Angelica Cristello Sarteau, Susana R Patton, Rona Y Sonabend, Jacob D Kohlenberg, Mark A Clements\",\"doi\":\"10.1089/dia.2024.0484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aim:</i></b> To use electronic health record (EHR) data to develop a scalable and transferrable model to predict 6-month risk for diabetic ketoacidosis (DKA)-related hospitalization or emergency care in youth with type 1 diabetes (T1D). <b><i>Method:</i></b> To achieve a sharable predictive model, we engineered features using EHR data mapped to the T1D Exchange Quality Improvement Collaborative's (T1DX-QI) data schema used by 60+ U.S. diabetes centers and chose a compact set of 15 features (e.g., demographics, factors related to diabetes management, etc.) to yield \\\"explainable AI\\\" predictions for DKA risk on a 6-month horizon. We used an ensemble of gradient-boosted, tree-based models trained on data collected from September 1, 2017 to November 1, 2022 (3097 unique patients; 24,638 clinical encounters) from a tertiary care pediatric diabetes clinic network in the Midwest USA. <b><i>Results:</i></b> We rank-ordered the top 10, 25, 50, and 100 highest-risk youth in an out-of-sample testing set, which yielded an average precision of 0.96, 0.81, 0.75, and 0.70, respectively. The lift of the model (relative to random selection) for the top 100 individuals is 19. The model identified average time between DKA episodes, time since the last DKA episode, and T1D duration as the top three features for predicting DKA risk. <b><i>Conclusions:</i></b> Our DKA risk model effectively predicts youths' relative risk of experiencing hospitalization for DKA and is readily deployable to other diabetes centers that map diabetes data to the T1DX-QI schema. This model may facilitate the development of targeted interventions for youths at the highest risk for DKA. Future work will add novel features such as device data, social determinants of health, and diabetes self-management behaviors.</p>\",\"PeriodicalId\":11159,\"journal\":{\"name\":\"Diabetes technology & therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes technology & therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/dia.2024.0484\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes technology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/dia.2024.0484","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用电子健康记录(EHR)数据开发一个可扩展和可转移的模型,预测青少年1型糖尿病(T1D)患者6个月发生糖尿病酮症酸中毒(DKA)相关住院或急诊的风险。方法:为了实现可共享的预测模型,我们使用映射到60多个美国糖尿病中心使用的T1D交换质量改进协作(T1DX-QI)数据模式的EHR数据设计特征,并选择了一组紧凑的15个特征(例如,人口统计学,与糖尿病管理相关的因素等),以产生6个月内DKA风险的“可解释的AI”预测。我们使用了一组梯度增强的基于树的模型,这些模型是根据2017年9月1日至2022年11月1日收集的数据训练的(3097名独特患者;24,638例临床接触)来自美国中西部三级保健儿科糖尿病诊所网络。结果:我们对样本外测试集中前10名、25名、50名和100名风险最高的年轻人进行了排序,平均精度分别为0.96、0.81、0.75和0.70。前100名个体的模型抬升(相对于随机选择)为19。该模型确定了DKA发作之间的平均时间,上一次DKA发作的时间和T1D持续时间是预测DKA风险的前三个特征。结论:我们的DKA风险模型有效地预测了青少年因DKA住院的相对风险,并且很容易部署到其他糖尿病中心,将糖尿病数据映射到T1DX-QI模式。这一模式可能有助于为DKA风险最高的青少年制定有针对性的干预措施。未来的工作将增加新的功能,如设备数据、健康的社会决定因素和糖尿病自我管理行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting and Ranking Diabetic Ketoacidosis Risk among Youth with Type 1 Diabetes with a Clinic-to-Clinic Transferrable Machine Learning Model.

Aim: To use electronic health record (EHR) data to develop a scalable and transferrable model to predict 6-month risk for diabetic ketoacidosis (DKA)-related hospitalization or emergency care in youth with type 1 diabetes (T1D). Method: To achieve a sharable predictive model, we engineered features using EHR data mapped to the T1D Exchange Quality Improvement Collaborative's (T1DX-QI) data schema used by 60+ U.S. diabetes centers and chose a compact set of 15 features (e.g., demographics, factors related to diabetes management, etc.) to yield "explainable AI" predictions for DKA risk on a 6-month horizon. We used an ensemble of gradient-boosted, tree-based models trained on data collected from September 1, 2017 to November 1, 2022 (3097 unique patients; 24,638 clinical encounters) from a tertiary care pediatric diabetes clinic network in the Midwest USA. Results: We rank-ordered the top 10, 25, 50, and 100 highest-risk youth in an out-of-sample testing set, which yielded an average precision of 0.96, 0.81, 0.75, and 0.70, respectively. The lift of the model (relative to random selection) for the top 100 individuals is 19. The model identified average time between DKA episodes, time since the last DKA episode, and T1D duration as the top three features for predicting DKA risk. Conclusions: Our DKA risk model effectively predicts youths' relative risk of experiencing hospitalization for DKA and is readily deployable to other diabetes centers that map diabetes data to the T1DX-QI schema. This model may facilitate the development of targeted interventions for youths at the highest risk for DKA. Future work will add novel features such as device data, social determinants of health, and diabetes self-management behaviors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetes technology & therapeutics
Diabetes technology & therapeutics 医学-内分泌学与代谢
CiteScore
10.60
自引率
14.80%
发文量
145
审稿时长
3-8 weeks
期刊介绍: Diabetes Technology & Therapeutics is the only peer-reviewed journal providing healthcare professionals with information on new devices, drugs, drug delivery systems, and software for managing patients with diabetes. This leading international journal delivers practical information and comprehensive coverage of cutting-edge technologies and therapeutics in the field, and each issue highlights new pharmacological and device developments to optimize patient care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信