预测金属材料的晶界滑动

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jun-Jing He , Rolf Sandström , Shuai-Rui Lü , Pavel Korzhavyi , Jing Zhang , Hai-Ying Qin , Jia-Bin Liu
{"title":"预测金属材料的晶界滑动","authors":"Jun-Jing He ,&nbsp;Rolf Sandström ,&nbsp;Shuai-Rui Lü ,&nbsp;Pavel Korzhavyi ,&nbsp;Jing Zhang ,&nbsp;Hai-Ying Qin ,&nbsp;Jia-Bin Liu","doi":"10.1016/j.actamat.2025.120718","DOIUrl":null,"url":null,"abstract":"<div><div>Grain boundary sliding (GBS) significantly influences the mechanical properties of polycrystalline metals and alloys. A comprehensive set of GBS data spanning 70 years and encompassing 12 material classes under various deformation conditions has been compiled. Analysis identifies strain (<em>ε</em>) and grain size (<em>d</em><sub>g</sub>) as the primary factors influencing GBS displacement in agreement with a previously developed basic model, revealing a linear dependence of GBS displacement on strain and grain size. A major factor in the model is the strain enhancement factor, i.e., the ratio between the creep strain due to GBS and the total creep strain. Utilizing the average strain enhancement factor from the GBS data (0.2), the model demonstrates predictive capabilities across various materials (Fe, ferritic steels, austenitic steels, Al, Mg, Cu, Zn, and their respective alloys), grain sizes (nanometers to micrometers), and strain levels (0.1–161 %) without significant loss in statistical accuracy. Application to creep cavitation further illustrates the usefulness of the model.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"286 ","pages":"Article 120718"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting grain boundary sliding in metallic materials\",\"authors\":\"Jun-Jing He ,&nbsp;Rolf Sandström ,&nbsp;Shuai-Rui Lü ,&nbsp;Pavel Korzhavyi ,&nbsp;Jing Zhang ,&nbsp;Hai-Ying Qin ,&nbsp;Jia-Bin Liu\",\"doi\":\"10.1016/j.actamat.2025.120718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Grain boundary sliding (GBS) significantly influences the mechanical properties of polycrystalline metals and alloys. A comprehensive set of GBS data spanning 70 years and encompassing 12 material classes under various deformation conditions has been compiled. Analysis identifies strain (<em>ε</em>) and grain size (<em>d</em><sub>g</sub>) as the primary factors influencing GBS displacement in agreement with a previously developed basic model, revealing a linear dependence of GBS displacement on strain and grain size. A major factor in the model is the strain enhancement factor, i.e., the ratio between the creep strain due to GBS and the total creep strain. Utilizing the average strain enhancement factor from the GBS data (0.2), the model demonstrates predictive capabilities across various materials (Fe, ferritic steels, austenitic steels, Al, Mg, Cu, Zn, and their respective alloys), grain sizes (nanometers to micrometers), and strain levels (0.1–161 %) without significant loss in statistical accuracy. Application to creep cavitation further illustrates the usefulness of the model.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"286 \",\"pages\":\"Article 120718\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425000114\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425000114","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶界滑动对多晶金属和合金的力学性能有重要影响。编制了一套全面的GBS数据,涵盖了70年来各种变形条件下的12种材料。分析发现应变(ε)和晶粒尺寸(dg)是影响GBS位移的主要因素,与先前建立的基本模型一致,揭示了GBS位移与应变和晶粒尺寸的线性关系。模型中的一个主要因素是应变增强因子,即由GBS引起的蠕变应变与总蠕变应变之比。利用GBS数据的平均应变增强因子(0.2),该模型显示了对各种材料(铁素体钢、奥氏体钢、Al、Mg、Cu、Zn及其各自合金)、晶粒尺寸(纳米到微米)和应变水平(0.1-161%)的预测能力,而统计精度没有显著损失。蠕变空化的应用进一步说明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting grain boundary sliding in metallic materials

Predicting grain boundary sliding in metallic materials

Predicting grain boundary sliding in metallic materials
Grain boundary sliding (GBS) significantly influences the mechanical properties of polycrystalline metals and alloys. A comprehensive set of GBS data spanning 70 years and encompassing 12 material classes under various deformation conditions has been compiled. Analysis identifies strain (ε) and grain size (dg) as the primary factors influencing GBS displacement in agreement with a previously developed basic model, revealing a linear dependence of GBS displacement on strain and grain size. A major factor in the model is the strain enhancement factor, i.e., the ratio between the creep strain due to GBS and the total creep strain. Utilizing the average strain enhancement factor from the GBS data (0.2), the model demonstrates predictive capabilities across various materials (Fe, ferritic steels, austenitic steels, Al, Mg, Cu, Zn, and their respective alloys), grain sizes (nanometers to micrometers), and strain levels (0.1–161 %) without significant loss in statistical accuracy. Application to creep cavitation further illustrates the usefulness of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信