BIOEFGM II:模拟地下水中BTEX污染物通过多个电子受体进行好氧和厌氧生物降解的二维无网格模型

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Tinesh Pathania
{"title":"BIOEFGM II:模拟地下水中BTEX污染物通过多个电子受体进行好氧和厌氧生物降解的二维无网格模型","authors":"Tinesh Pathania","doi":"10.1016/j.enganabound.2024.106089","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, a meshless BIOEFGM II model is proposed to simulate the natural attenuation of BTEX contaminant (benzene, toluene, ethylbenzene, and xylenes) through multiple aerobic and anaerobic electron acceptors in the two-dimensional groundwater system. This model is the extension of the BIOEFGM I model for aerobic BTEX degradation. In BIOEFGM II, the meshless element-free Galerkin method (EFGM) is applied to governing groundwater flow and reactive transport equations. The weak-integral form of EFGM is also applied to the Darcy law equation to compute the groundwater velocity directly at scattered field nodes representing the aquifer domain. This step allows the easy coupling of flow and transport models with both regular and irregular nodes in BIOEFGM II, unlike grid/mesh-based models. The proposed model is the first multispecies model that can simulate natural BTEX degradation using regular/irregular field nodes. In this study, proposed BIOEFGM II-RG and BIOEFGM II-IRG for regular and irregular nodes respectively are applied to a hypothetical aquifer and field-type large heterogeneous aquifer, and results are verified with the benchmark RT3D model. The results of this study reveal that aerobic and anaerobic processes contribute to 30%–40% and 60%–70% of the total BTEX degradation respectively.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106089"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BIOEFGM II: Two-dimensional meshless model to simulate the aerobic and anaerobic biodegradation of BTEX contaminant through multiple electron acceptors in groundwater\",\"authors\":\"Tinesh Pathania\",\"doi\":\"10.1016/j.enganabound.2024.106089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the present study, a meshless BIOEFGM II model is proposed to simulate the natural attenuation of BTEX contaminant (benzene, toluene, ethylbenzene, and xylenes) through multiple aerobic and anaerobic electron acceptors in the two-dimensional groundwater system. This model is the extension of the BIOEFGM I model for aerobic BTEX degradation. In BIOEFGM II, the meshless element-free Galerkin method (EFGM) is applied to governing groundwater flow and reactive transport equations. The weak-integral form of EFGM is also applied to the Darcy law equation to compute the groundwater velocity directly at scattered field nodes representing the aquifer domain. This step allows the easy coupling of flow and transport models with both regular and irregular nodes in BIOEFGM II, unlike grid/mesh-based models. The proposed model is the first multispecies model that can simulate natural BTEX degradation using regular/irregular field nodes. In this study, proposed BIOEFGM II-RG and BIOEFGM II-IRG for regular and irregular nodes respectively are applied to a hypothetical aquifer and field-type large heterogeneous aquifer, and results are verified with the benchmark RT3D model. The results of this study reveal that aerobic and anaerobic processes contribute to 30%–40% and 60%–70% of the total BTEX degradation respectively.</div></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":\"171 \",\"pages\":\"Article 106089\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724005629\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724005629","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,提出了一个无网格BIOEFGM II模型来模拟二维地下水系统中BTEX污染物(苯、甲苯、乙苯和二甲苯)通过多个好氧和厌氧电子受体的自然衰减。该模型是BIOEFGM I有氧降解BTEX模型的扩展。在BIOEFGM II中,采用无网格无单元伽辽金法(EFGM)来控制地下水流动和反应输运方程。将EFGM的弱积分形式应用于Darcy定律方程,直接计算代表含水层域的分散场节点处的地下水速度。与基于网格/网格的模型不同,这一步允许流动和运输模型与BIOEFGM II中的规则和不规则节点轻松耦合。该模型是第一个可以使用规则/不规则现场节点模拟BTEX自然降解的多物种模型。本文将提出的规则节点BIOEFGM II-RG和不规则节点BIOEFGM II-IRG分别应用于假设含水层和油田型大型非均质含水层,并与基准RT3D模型进行验证。本研究结果表明,好氧和厌氧工艺对BTEX降解总量的贡献率分别为30% ~ 40%和60% ~ 70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BIOEFGM II: Two-dimensional meshless model to simulate the aerobic and anaerobic biodegradation of BTEX contaminant through multiple electron acceptors in groundwater
In the present study, a meshless BIOEFGM II model is proposed to simulate the natural attenuation of BTEX contaminant (benzene, toluene, ethylbenzene, and xylenes) through multiple aerobic and anaerobic electron acceptors in the two-dimensional groundwater system. This model is the extension of the BIOEFGM I model for aerobic BTEX degradation. In BIOEFGM II, the meshless element-free Galerkin method (EFGM) is applied to governing groundwater flow and reactive transport equations. The weak-integral form of EFGM is also applied to the Darcy law equation to compute the groundwater velocity directly at scattered field nodes representing the aquifer domain. This step allows the easy coupling of flow and transport models with both regular and irregular nodes in BIOEFGM II, unlike grid/mesh-based models. The proposed model is the first multispecies model that can simulate natural BTEX degradation using regular/irregular field nodes. In this study, proposed BIOEFGM II-RG and BIOEFGM II-IRG for regular and irregular nodes respectively are applied to a hypothetical aquifer and field-type large heterogeneous aquifer, and results are verified with the benchmark RT3D model. The results of this study reveal that aerobic and anaerobic processes contribute to 30%–40% and 60%–70% of the total BTEX degradation respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信