{"title":"探索碳氢化合物交联剂对订书钉 p53 肽的结构和结合的影响。","authors":"Asha Rani Choudhury, Vikram Gaikwad, Atanu Maity, Rajarshi Chakrabarti","doi":"10.1002/prot.26793","DOIUrl":null,"url":null,"abstract":"<p><p>Short-length peptides are used as therapeutics due to their high target specificity and low toxicity; for example, peptides are designed for targeting the interaction between oncogenic protein p53 and E3 ubiquitin ligase MDM2. These peptide therapeutics form a class of successful inhibitors. To design such peptide-based inhibitors, stapling is one of the methods in which amino acid side chains are stitched together to get conformationally rigid peptides, ensuring effective binding to their partners. In the current work, we use computer simulations to investigate p53 peptides stapled with hydrocarbon chains of different lengths and positions of attachment to the peptide. We subsequently analyze their binding efficiency with MDM2. The introduction of stapling agents restricts the conformational dynamics of peptides, resulting in higher persistence of helicity. The efficiency of the stapling agents has also been verified imposing these stapled peptides to adverse conditions viz. thermal and chemical denaturation. In addition, the conformational exploration of peptides has been investigated using temperature replica exchange molecular dynamics (T-REMD) simulations. From both the unbiased and T-REMD simulations, p53 with a long hydrocarbon cross-linker shows a more conformationally rigid structure having high helicity compared to other stapled peptides. The rigidity gained due to cross-linking reduces the entropy of the peptide in the free state and thereby facilitates the complexation process. From the binding studies, we have shown that the peptide having multiple short staples has a larger enthalpy change during binding, resulting from its orientation and interactions with residues in the binding interface. On the other hand, a peptide with a single long stapling agent shows less entropic penalty than other systems. Our study suggests a plausible rationale for the relation between the length and the position of attachment of cross-linkers to peptides and their binding affinity for target partners.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Effect of Hydrocarbon Cross-Linkers on the Structure and Binding of Stapled p53 Peptides.\",\"authors\":\"Asha Rani Choudhury, Vikram Gaikwad, Atanu Maity, Rajarshi Chakrabarti\",\"doi\":\"10.1002/prot.26793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Short-length peptides are used as therapeutics due to their high target specificity and low toxicity; for example, peptides are designed for targeting the interaction between oncogenic protein p53 and E3 ubiquitin ligase MDM2. These peptide therapeutics form a class of successful inhibitors. To design such peptide-based inhibitors, stapling is one of the methods in which amino acid side chains are stitched together to get conformationally rigid peptides, ensuring effective binding to their partners. In the current work, we use computer simulations to investigate p53 peptides stapled with hydrocarbon chains of different lengths and positions of attachment to the peptide. We subsequently analyze their binding efficiency with MDM2. The introduction of stapling agents restricts the conformational dynamics of peptides, resulting in higher persistence of helicity. The efficiency of the stapling agents has also been verified imposing these stapled peptides to adverse conditions viz. thermal and chemical denaturation. In addition, the conformational exploration of peptides has been investigated using temperature replica exchange molecular dynamics (T-REMD) simulations. From both the unbiased and T-REMD simulations, p53 with a long hydrocarbon cross-linker shows a more conformationally rigid structure having high helicity compared to other stapled peptides. The rigidity gained due to cross-linking reduces the entropy of the peptide in the free state and thereby facilitates the complexation process. From the binding studies, we have shown that the peptide having multiple short staples has a larger enthalpy change during binding, resulting from its orientation and interactions with residues in the binding interface. On the other hand, a peptide with a single long stapling agent shows less entropic penalty than other systems. Our study suggests a plausible rationale for the relation between the length and the position of attachment of cross-linkers to peptides and their binding affinity for target partners.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26793\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26793","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring the Effect of Hydrocarbon Cross-Linkers on the Structure and Binding of Stapled p53 Peptides.
Short-length peptides are used as therapeutics due to their high target specificity and low toxicity; for example, peptides are designed for targeting the interaction between oncogenic protein p53 and E3 ubiquitin ligase MDM2. These peptide therapeutics form a class of successful inhibitors. To design such peptide-based inhibitors, stapling is one of the methods in which amino acid side chains are stitched together to get conformationally rigid peptides, ensuring effective binding to their partners. In the current work, we use computer simulations to investigate p53 peptides stapled with hydrocarbon chains of different lengths and positions of attachment to the peptide. We subsequently analyze their binding efficiency with MDM2. The introduction of stapling agents restricts the conformational dynamics of peptides, resulting in higher persistence of helicity. The efficiency of the stapling agents has also been verified imposing these stapled peptides to adverse conditions viz. thermal and chemical denaturation. In addition, the conformational exploration of peptides has been investigated using temperature replica exchange molecular dynamics (T-REMD) simulations. From both the unbiased and T-REMD simulations, p53 with a long hydrocarbon cross-linker shows a more conformationally rigid structure having high helicity compared to other stapled peptides. The rigidity gained due to cross-linking reduces the entropy of the peptide in the free state and thereby facilitates the complexation process. From the binding studies, we have shown that the peptide having multiple short staples has a larger enthalpy change during binding, resulting from its orientation and interactions with residues in the binding interface. On the other hand, a peptide with a single long stapling agent shows less entropic penalty than other systems. Our study suggests a plausible rationale for the relation between the length and the position of attachment of cross-linkers to peptides and their binding affinity for target partners.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.