Moujan Saderi, Jaykumar H Patel, Calder D Sheagren, Judit Csőre, Trisha L Roy, Graham A Wright
{"title":"三维 CT 与二维 X 光图像配准,改善血管内手术中胫骨血管的可视化。","authors":"Moujan Saderi, Jaykumar H Patel, Calder D Sheagren, Judit Csőre, Trisha L Roy, Graham A Wright","doi":"10.1007/s11548-024-03302-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>During endovascular revascularization interventions for peripheral arterial disease, the standard modality of X-ray fluoroscopy (XRF) used for image guidance is limited in visualizing distal segments of infrapopliteal vessels. To enhance visualization of arteries, an image registration technique was developed to align pre-acquired computed tomography (CT) angiography images and to create fusion images highlighting arteries of interest.</p><p><strong>Methods: </strong>X-ray image metadata capturing the position of the X-ray gantry initializes a multiscale iterative optimization process, which uses a local-variance masked normalized cross-correlation loss to rigidly align a digitally reconstructed radiograph (DRR) of the CT dataset with the target X-ray, using the edges of the fibula and tibia as the basis for alignment. A precomputed library of DRRs is used to improve run-time, and the six-degree-of-freedom optimization problem of rigid registration is divided into three smaller sub-problems to improve convergence. The method was tested on a dataset of paired cone-beam CT (CBCT) and XRF images of ex vivo limbs, and registration accuracy at the midline of the artery was evaluated.</p><p><strong>Results: </strong>On a dataset of CBCTs from 4 different limbs and a total of 17 XRF images, successful registration was achieved in 13 cases, with the remainder suffering from input image quality issues. The method produced average misalignments of less than 1 mm in horizontal projection distance along the artery midline, with an average run-time of 16 s.</p><p><strong>Conclusion: </strong>The sub-mm spatial accuracy of artery overlays is sufficient for the clinical use case of identifying guidewire deviations from the path of the artery, for early detection of guidewire-induced perforations. The semiautomatic workflow and average run-time of the algorithm make it feasible for integration into clinical workflows.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D CT to 2D X-ray image registration for improved visualization of tibial vessels in endovascular procedures.\",\"authors\":\"Moujan Saderi, Jaykumar H Patel, Calder D Sheagren, Judit Csőre, Trisha L Roy, Graham A Wright\",\"doi\":\"10.1007/s11548-024-03302-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>During endovascular revascularization interventions for peripheral arterial disease, the standard modality of X-ray fluoroscopy (XRF) used for image guidance is limited in visualizing distal segments of infrapopliteal vessels. To enhance visualization of arteries, an image registration technique was developed to align pre-acquired computed tomography (CT) angiography images and to create fusion images highlighting arteries of interest.</p><p><strong>Methods: </strong>X-ray image metadata capturing the position of the X-ray gantry initializes a multiscale iterative optimization process, which uses a local-variance masked normalized cross-correlation loss to rigidly align a digitally reconstructed radiograph (DRR) of the CT dataset with the target X-ray, using the edges of the fibula and tibia as the basis for alignment. A precomputed library of DRRs is used to improve run-time, and the six-degree-of-freedom optimization problem of rigid registration is divided into three smaller sub-problems to improve convergence. The method was tested on a dataset of paired cone-beam CT (CBCT) and XRF images of ex vivo limbs, and registration accuracy at the midline of the artery was evaluated.</p><p><strong>Results: </strong>On a dataset of CBCTs from 4 different limbs and a total of 17 XRF images, successful registration was achieved in 13 cases, with the remainder suffering from input image quality issues. The method produced average misalignments of less than 1 mm in horizontal projection distance along the artery midline, with an average run-time of 16 s.</p><p><strong>Conclusion: </strong>The sub-mm spatial accuracy of artery overlays is sufficient for the clinical use case of identifying guidewire deviations from the path of the artery, for early detection of guidewire-induced perforations. The semiautomatic workflow and average run-time of the algorithm make it feasible for integration into clinical workflows.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03302-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03302-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
3D CT to 2D X-ray image registration for improved visualization of tibial vessels in endovascular procedures.
Purpose: During endovascular revascularization interventions for peripheral arterial disease, the standard modality of X-ray fluoroscopy (XRF) used for image guidance is limited in visualizing distal segments of infrapopliteal vessels. To enhance visualization of arteries, an image registration technique was developed to align pre-acquired computed tomography (CT) angiography images and to create fusion images highlighting arteries of interest.
Methods: X-ray image metadata capturing the position of the X-ray gantry initializes a multiscale iterative optimization process, which uses a local-variance masked normalized cross-correlation loss to rigidly align a digitally reconstructed radiograph (DRR) of the CT dataset with the target X-ray, using the edges of the fibula and tibia as the basis for alignment. A precomputed library of DRRs is used to improve run-time, and the six-degree-of-freedom optimization problem of rigid registration is divided into three smaller sub-problems to improve convergence. The method was tested on a dataset of paired cone-beam CT (CBCT) and XRF images of ex vivo limbs, and registration accuracy at the midline of the artery was evaluated.
Results: On a dataset of CBCTs from 4 different limbs and a total of 17 XRF images, successful registration was achieved in 13 cases, with the remainder suffering from input image quality issues. The method produced average misalignments of less than 1 mm in horizontal projection distance along the artery midline, with an average run-time of 16 s.
Conclusion: The sub-mm spatial accuracy of artery overlays is sufficient for the clinical use case of identifying guidewire deviations from the path of the artery, for early detection of guidewire-induced perforations. The semiautomatic workflow and average run-time of the algorithm make it feasible for integration into clinical workflows.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.