靶向代谢组学揭示结直肠癌新的诊断生物标志物。

IF 6.6 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Zuojian Hu, Fenglin Shen, Yang Liu, Ziqing Zhong, Yongling Chen, Zhiyuan Xia, Cuiju Mo, Hongxiu Yu
{"title":"靶向代谢组学揭示结直肠癌新的诊断生物标志物。","authors":"Zuojian Hu, Fenglin Shen, Yang Liu, Ziqing Zhong, Yongling Chen, Zhiyuan Xia, Cuiju Mo, Hongxiu Yu","doi":"10.1002/1878-0261.13791","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a prevalent malignant tumor worldwide, with a high mortality rate due to its complex etiology and limited early screening techniques. This study aimed to identify potential biomarkers for early detection of CRC utilizing targeted metabolite profiling of platelet-rich plasma (PRP). Based on multiple reaction monitoring (MRM) mode, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis identified metabolites in PRP collected from patients with CRC (n = 70) and healthy controls (n = 30). A total of 302 metabolites were identified and quantified in this study, including various categories such as lipids, lipid mediators, amino acids, and derivatives, organic acids and derivatives, nucleotides and derivatives, alkaloids, carbohydrates, vitamins and derivatives, and others. The differential analysis revealed that five carbohydrates and organic acids (lactose, glycerol-3-phosphate, 2-hydroxyglutaric acid, isocitric acid, and citric acid) involved in the carbohydrate metabolism pathway displayed consistent upregulation within PRP derived from patients with CRC. To further validate the abundance of differential metabolites, 10 pairs of CRC tissues, adjacent tissues, and matched PRP were collected. Ultimately, five carbohydrate metabolites were validated in PRP, and compared with carcinoembryonic antigen (CEA) and cancer antigen 19-9 (CA199), the five carbohydrate metabolites significantly improved the specificity of differentiating patients with CRC from healthy controls. Furthermore, the diagnostic efficacy of the combined five-carbohydrate metabolite panel was superior to that of individual metabolites, CEA and CA199. The sensitivity, specificity, and AUC of the metabolite panel in distinguishing patients with CRC from healthy controls were 90.00%, 96.67%, and 0.961 (95% CI 0.922-0.998), respectively. Collectively, metabolomics was used to identify and validate differential metabolites in the PRP of CRC, which may serve as potential early screening markers for patients with CRC.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted metabolomics reveals novel diagnostic biomarkers for colorectal cancer.\",\"authors\":\"Zuojian Hu, Fenglin Shen, Yang Liu, Ziqing Zhong, Yongling Chen, Zhiyuan Xia, Cuiju Mo, Hongxiu Yu\",\"doi\":\"10.1002/1878-0261.13791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) is a prevalent malignant tumor worldwide, with a high mortality rate due to its complex etiology and limited early screening techniques. This study aimed to identify potential biomarkers for early detection of CRC utilizing targeted metabolite profiling of platelet-rich plasma (PRP). Based on multiple reaction monitoring (MRM) mode, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis identified metabolites in PRP collected from patients with CRC (n = 70) and healthy controls (n = 30). A total of 302 metabolites were identified and quantified in this study, including various categories such as lipids, lipid mediators, amino acids, and derivatives, organic acids and derivatives, nucleotides and derivatives, alkaloids, carbohydrates, vitamins and derivatives, and others. The differential analysis revealed that five carbohydrates and organic acids (lactose, glycerol-3-phosphate, 2-hydroxyglutaric acid, isocitric acid, and citric acid) involved in the carbohydrate metabolism pathway displayed consistent upregulation within PRP derived from patients with CRC. To further validate the abundance of differential metabolites, 10 pairs of CRC tissues, adjacent tissues, and matched PRP were collected. Ultimately, five carbohydrate metabolites were validated in PRP, and compared with carcinoembryonic antigen (CEA) and cancer antigen 19-9 (CA199), the five carbohydrate metabolites significantly improved the specificity of differentiating patients with CRC from healthy controls. Furthermore, the diagnostic efficacy of the combined five-carbohydrate metabolite panel was superior to that of individual metabolites, CEA and CA199. The sensitivity, specificity, and AUC of the metabolite panel in distinguishing patients with CRC from healthy controls were 90.00%, 96.67%, and 0.961 (95% CI 0.922-0.998), respectively. Collectively, metabolomics was used to identify and validate differential metabolites in the PRP of CRC, which may serve as potential early screening markers for patients with CRC.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.13791\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13791","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

结直肠癌(CRC)是世界范围内普遍存在的恶性肿瘤,由于其复杂的病因和有限的早期筛查技术,其死亡率很高。本研究旨在利用富血小板血浆(PRP)的靶向代谢物谱,确定CRC早期检测的潜在生物标志物。基于多重反应监测(MRM)模式,液相色谱串联质谱(LC-MS/MS)分析鉴定了从结直肠癌患者(n = 70)和健康对照组(n = 30)收集的PRP中的代谢物。本研究共鉴定和量化了302种代谢物,包括脂质、脂质介质、氨基酸及其衍生物、有机酸及其衍生物、核苷酸及其衍生物、生物碱、碳水化合物、维生素及其衍生物等。差异分析显示,参与碳水化合物代谢途径的五种碳水化合物和有机酸(乳糖、甘油-3-磷酸、2-羟基戊二酸、异柠檬酸和柠檬酸)在CRC患者的PRP中表现出一致的上调。为了进一步验证差异代谢物的丰度,我们收集了10对CRC组织、邻近组织和匹配的PRP。最终,在PRP中验证了5种碳水化合物代谢物,与癌胚抗原(CEA)和癌抗原19-9 (CA199)相比,5种碳水化合物代谢物显著提高了CRC患者与健康对照的特异性。此外,联合五碳水化合物代谢物组的诊断效果优于单个代谢物、CEA和CA199。代谢物组区分结直肠癌患者与健康对照的敏感性、特异性和AUC分别为90.00%、96.67%和0.961 (95% CI 0.922-0.998)。总的来说,代谢组学用于鉴定和验证CRC PRP中的差异代谢物,这些代谢物可能作为CRC患者潜在的早期筛查标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeted metabolomics reveals novel diagnostic biomarkers for colorectal cancer.

Colorectal cancer (CRC) is a prevalent malignant tumor worldwide, with a high mortality rate due to its complex etiology and limited early screening techniques. This study aimed to identify potential biomarkers for early detection of CRC utilizing targeted metabolite profiling of platelet-rich plasma (PRP). Based on multiple reaction monitoring (MRM) mode, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis identified metabolites in PRP collected from patients with CRC (n = 70) and healthy controls (n = 30). A total of 302 metabolites were identified and quantified in this study, including various categories such as lipids, lipid mediators, amino acids, and derivatives, organic acids and derivatives, nucleotides and derivatives, alkaloids, carbohydrates, vitamins and derivatives, and others. The differential analysis revealed that five carbohydrates and organic acids (lactose, glycerol-3-phosphate, 2-hydroxyglutaric acid, isocitric acid, and citric acid) involved in the carbohydrate metabolism pathway displayed consistent upregulation within PRP derived from patients with CRC. To further validate the abundance of differential metabolites, 10 pairs of CRC tissues, adjacent tissues, and matched PRP were collected. Ultimately, five carbohydrate metabolites were validated in PRP, and compared with carcinoembryonic antigen (CEA) and cancer antigen 19-9 (CA199), the five carbohydrate metabolites significantly improved the specificity of differentiating patients with CRC from healthy controls. Furthermore, the diagnostic efficacy of the combined five-carbohydrate metabolite panel was superior to that of individual metabolites, CEA and CA199. The sensitivity, specificity, and AUC of the metabolite panel in distinguishing patients with CRC from healthy controls were 90.00%, 96.67%, and 0.961 (95% CI 0.922-0.998), respectively. Collectively, metabolomics was used to identify and validate differential metabolites in the PRP of CRC, which may serve as potential early screening markers for patients with CRC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信