病理学和医学中的人工智能(AI)和机器学习(ML)导论:生成和非生成AI基础。

IF 7.1 1区 医学 Q1 PATHOLOGY
Hooman H. Rashidi , Joshua Pantanowitz , Matthew G. Hanna , Ahmad P. Tafti , Parth Sanghani , Adam Buchinsky , Brandon Fennell , Mustafa Deebajah , Sarah Wheeler , Thomas Pearce , Ibrahim Abukhiran , Scott Robertson , Octavia Palmer , Mert Gur , Nam K. Tran , Liron Pantanowitz
{"title":"病理学和医学中的人工智能(AI)和机器学习(ML)导论:生成和非生成AI基础。","authors":"Hooman H. Rashidi ,&nbsp;Joshua Pantanowitz ,&nbsp;Matthew G. Hanna ,&nbsp;Ahmad P. Tafti ,&nbsp;Parth Sanghani ,&nbsp;Adam Buchinsky ,&nbsp;Brandon Fennell ,&nbsp;Mustafa Deebajah ,&nbsp;Sarah Wheeler ,&nbsp;Thomas Pearce ,&nbsp;Ibrahim Abukhiran ,&nbsp;Scott Robertson ,&nbsp;Octavia Palmer ,&nbsp;Mert Gur ,&nbsp;Nam K. Tran ,&nbsp;Liron Pantanowitz","doi":"10.1016/j.modpat.2024.100688","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript serves as an introduction to a comprehensive 7-part review article series on artificial intelligence (AI) and machine learning (ML) and their current and future influence within pathology and medicine. This introductory review provides a comprehensive grasp of this fast-expanding realm and its potential to transform medical diagnosis, workflow, research, and education. Fundamental terminology employed in AI-ML is covered using an extensive dictionary. The article also provides a broad overview of the main domains in the AI-ML field, encompassing both generative and nongenerative (traditional) AI, thereby serving as a primer to the other 6 review articles in this series that describe the details about statistics, regulations, bias, ethical dilemmas, and ML-Ops in AI-ML. The intent of these review articles is to better equip individuals who are or will be working in an AI-enabled health care system.</div></div>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":"38 4","pages":"Article 100688"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introduction to Artificial Intelligence and Machine Learning in Pathology and Medicine: Generative and Nongenerative Artificial Intelligence Basics\",\"authors\":\"Hooman H. Rashidi ,&nbsp;Joshua Pantanowitz ,&nbsp;Matthew G. Hanna ,&nbsp;Ahmad P. Tafti ,&nbsp;Parth Sanghani ,&nbsp;Adam Buchinsky ,&nbsp;Brandon Fennell ,&nbsp;Mustafa Deebajah ,&nbsp;Sarah Wheeler ,&nbsp;Thomas Pearce ,&nbsp;Ibrahim Abukhiran ,&nbsp;Scott Robertson ,&nbsp;Octavia Palmer ,&nbsp;Mert Gur ,&nbsp;Nam K. Tran ,&nbsp;Liron Pantanowitz\",\"doi\":\"10.1016/j.modpat.2024.100688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript serves as an introduction to a comprehensive 7-part review article series on artificial intelligence (AI) and machine learning (ML) and their current and future influence within pathology and medicine. This introductory review provides a comprehensive grasp of this fast-expanding realm and its potential to transform medical diagnosis, workflow, research, and education. Fundamental terminology employed in AI-ML is covered using an extensive dictionary. The article also provides a broad overview of the main domains in the AI-ML field, encompassing both generative and nongenerative (traditional) AI, thereby serving as a primer to the other 6 review articles in this series that describe the details about statistics, regulations, bias, ethical dilemmas, and ML-Ops in AI-ML. The intent of these review articles is to better equip individuals who are or will be working in an AI-enabled health care system.</div></div>\",\"PeriodicalId\":18706,\"journal\":{\"name\":\"Modern Pathology\",\"volume\":\"38 4\",\"pages\":\"Article 100688\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893395224002680\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893395224002680","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

该手稿是关于人工智能(AI)和机器学习(ML)及其在病理学和医学中的当前和未来影响的综合七部分综述文章系列的介绍。这篇介绍性的综述提供了对这一快速扩展领域的全面把握,以及它在改变医疗诊断、工作流程、研究和教育方面的潜力。AI-ML中使用的基本术语使用广泛的字典进行介绍。本文还提供了AI- ml领域主要领域的广泛概述,包括生成和非生成(传统)AI。因此,作为本系列中其他六篇评论文章的入门文章,这些文章描述了AI-ML中的统计数据、法规、偏见、道德困境和ML-Ops的细节。这些评论文章的目的是更好地装备那些正在或将要在支持人工智能的医疗保健系统中工作的个人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introduction to Artificial Intelligence and Machine Learning in Pathology and Medicine: Generative and Nongenerative Artificial Intelligence Basics
This manuscript serves as an introduction to a comprehensive 7-part review article series on artificial intelligence (AI) and machine learning (ML) and their current and future influence within pathology and medicine. This introductory review provides a comprehensive grasp of this fast-expanding realm and its potential to transform medical diagnosis, workflow, research, and education. Fundamental terminology employed in AI-ML is covered using an extensive dictionary. The article also provides a broad overview of the main domains in the AI-ML field, encompassing both generative and nongenerative (traditional) AI, thereby serving as a primer to the other 6 review articles in this series that describe the details about statistics, regulations, bias, ethical dilemmas, and ML-Ops in AI-ML. The intent of these review articles is to better equip individuals who are or will be working in an AI-enabled health care system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Pathology
Modern Pathology 医学-病理学
CiteScore
14.30
自引率
2.70%
发文量
174
审稿时长
18 days
期刊介绍: Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology. Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信