{"title":"高氧激活的Nrf2通过COX-2/PGE2/EP2通路调控肠上皮细胞铁下沉,干预炎症反应。","authors":"Yanping Liu, Tianming Li, Changping Niu, Zhengwei Yuan, Siyu Sun, Dongyan Liu","doi":"10.1186/s10020-024-00993-7","DOIUrl":null,"url":null,"abstract":"<p><p>The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo. The results showed that ferroptosis was involved in intestinal oxidative damage caused by hyperoxia and was regulated by Nrf2. Moreover, hyperoxia-induced oxidative damage regulated inflammation through ferroptosis by upregulating the COX-2/PGE2/EP2 signaling pathway. These findings have important implications for future clinical prevention and therapeutic approaches to neonatal organ injury caused by hyperoxia treatment.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"1"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697811/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hyperoxia-activated Nrf2 regulates ferroptosis in intestinal epithelial cells and intervenes in inflammatory reaction through COX-2/PGE2/EP2 pathway.\",\"authors\":\"Yanping Liu, Tianming Li, Changping Niu, Zhengwei Yuan, Siyu Sun, Dongyan Liu\",\"doi\":\"10.1186/s10020-024-00993-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo. The results showed that ferroptosis was involved in intestinal oxidative damage caused by hyperoxia and was regulated by Nrf2. Moreover, hyperoxia-induced oxidative damage regulated inflammation through ferroptosis by upregulating the COX-2/PGE2/EP2 signaling pathway. These findings have important implications for future clinical prevention and therapeutic approaches to neonatal organ injury caused by hyperoxia treatment.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":\"31 1\",\"pages\":\"1\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697811/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-00993-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00993-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hyperoxia-activated Nrf2 regulates ferroptosis in intestinal epithelial cells and intervenes in inflammatory reaction through COX-2/PGE2/EP2 pathway.
The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo. The results showed that ferroptosis was involved in intestinal oxidative damage caused by hyperoxia and was regulated by Nrf2. Moreover, hyperoxia-induced oxidative damage regulated inflammation through ferroptosis by upregulating the COX-2/PGE2/EP2 signaling pathway. These findings have important implications for future clinical prevention and therapeutic approaches to neonatal organ injury caused by hyperoxia treatment.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.