{"title":"tradd介导的焦亡有助于糖尿病性心肌病。","authors":"Yang-Yang Zheng, Dan-Ning Shen, Xiao-Lu Peng, Wen-Qing San, Qian-You Zhou, Sheng-Ju Yang, Guo-Liang Meng, Jia-Hai Shi, Yun Chen","doi":"10.1038/s41401-024-01450-1","DOIUrl":null,"url":null,"abstract":"<p><p>Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis. However, no direct relationship between TRADD and pyroptosis has been identified. In this study, we investigated the role and mechanisms of TRADD in pyroptosis during DCM. We established a streptozotocin (STZ)-induced diabetic mouse model and high glucose (HG)-treated cardiomyocytes model. We showed that the expression levels of TRADD were significantly increased in the hearts of diabetic mice and HG-treated cardiomyocytes. Knockdown of TRADD did not affect blood glucose and triglyceride levels, but significantly improved cardiac function, and attenuated myocardial hypertrophy, fibrosis, and pyroptosis in the heart of diabetic mice. Furthermore, both knockdown of TRADD and application of TRADD inhibitor apostatin-1 (Apt-1, 10 μM) significantly ameliorated cell injury and pyroptosis in HG-treated cardiomyocytes. We demonstrated that HG treatment increased the expression of X-box binding protein 1 (XBP1) and enhanced the binding of XBP1 to the TRADD promoter to elevate TRADD expression in the cardiomyocytes. Collectively, this study provides evidence that TRADD-mediated pyroptosis contributes to DCM, suggesting that strategies to inhibit TRADD activity may be a novel approach for DCM treatment.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.\",\"authors\":\"Yang-Yang Zheng, Dan-Ning Shen, Xiao-Lu Peng, Wen-Qing San, Qian-You Zhou, Sheng-Ju Yang, Guo-Liang Meng, Jia-Hai Shi, Yun Chen\",\"doi\":\"10.1038/s41401-024-01450-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis. However, no direct relationship between TRADD and pyroptosis has been identified. In this study, we investigated the role and mechanisms of TRADD in pyroptosis during DCM. We established a streptozotocin (STZ)-induced diabetic mouse model and high glucose (HG)-treated cardiomyocytes model. We showed that the expression levels of TRADD were significantly increased in the hearts of diabetic mice and HG-treated cardiomyocytes. Knockdown of TRADD did not affect blood glucose and triglyceride levels, but significantly improved cardiac function, and attenuated myocardial hypertrophy, fibrosis, and pyroptosis in the heart of diabetic mice. Furthermore, both knockdown of TRADD and application of TRADD inhibitor apostatin-1 (Apt-1, 10 μM) significantly ameliorated cell injury and pyroptosis in HG-treated cardiomyocytes. We demonstrated that HG treatment increased the expression of X-box binding protein 1 (XBP1) and enhanced the binding of XBP1 to the TRADD promoter to elevate TRADD expression in the cardiomyocytes. Collectively, this study provides evidence that TRADD-mediated pyroptosis contributes to DCM, suggesting that strategies to inhibit TRADD activity may be a novel approach for DCM treatment.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-024-01450-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01450-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
调控细胞死亡如焦亡是糖尿病性心肌病(DCM)的一个重要原因,最终导致心力衰竭。肿瘤坏死因子(TNF)受体相关死亡结构域蛋白(TRADD)是一种具有多种功能的适配蛋白,通过调节受调控的细胞死亡参与不同心血管疾病的病理生理过程。研究表明,TRADD与受体相互作用蛋白激酶3 (receptor-interacting protein kinase 3, RIPK3)结合并促进其活化,从而介导tnf诱导的坏死性坏死。然而,TRADD和焦亡之间没有直接关系。在这项研究中,我们研究了TRADD在DCM过程中焦亡的作用和机制。建立链脲佐菌素(STZ)诱导的糖尿病小鼠模型和高糖(HG)处理的心肌细胞模型。我们发现TRADD的表达水平在糖尿病小鼠的心脏和hg处理的心肌细胞中显著增加。TRADD的下调不影响血糖和甘油三酯水平,但显著改善了糖尿病小鼠的心功能,减轻了心肌肥大、纤维化和焦朽。此外,TRADD的下调和TRADD抑制剂apostatin-1 (Apt-1, 10 μM)的应用均可显著改善hg处理的心肌细胞的细胞损伤和焦亡。我们证明HG处理增加了X-box结合蛋白1 (XBP1)的表达,并增强了XBP1与TRADD启动子的结合,从而提高了心肌细胞中TRADD的表达。总的来说,本研究提供了TRADD介导的焦亡有助于DCM的证据,表明抑制TRADD活性的策略可能是治疗DCM的新方法。
TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.
Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis. However, no direct relationship between TRADD and pyroptosis has been identified. In this study, we investigated the role and mechanisms of TRADD in pyroptosis during DCM. We established a streptozotocin (STZ)-induced diabetic mouse model and high glucose (HG)-treated cardiomyocytes model. We showed that the expression levels of TRADD were significantly increased in the hearts of diabetic mice and HG-treated cardiomyocytes. Knockdown of TRADD did not affect blood glucose and triglyceride levels, but significantly improved cardiac function, and attenuated myocardial hypertrophy, fibrosis, and pyroptosis in the heart of diabetic mice. Furthermore, both knockdown of TRADD and application of TRADD inhibitor apostatin-1 (Apt-1, 10 μM) significantly ameliorated cell injury and pyroptosis in HG-treated cardiomyocytes. We demonstrated that HG treatment increased the expression of X-box binding protein 1 (XBP1) and enhanced the binding of XBP1 to the TRADD promoter to elevate TRADD expression in the cardiomyocytes. Collectively, this study provides evidence that TRADD-mediated pyroptosis contributes to DCM, suggesting that strategies to inhibit TRADD activity may be a novel approach for DCM treatment.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.