mgtio3基陶瓷在K和Ka频段增强EMI屏蔽解决方案

IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Jasdeep Singh, Shalini Bahel
{"title":"mgtio3基陶瓷在K和Ka频段增强EMI屏蔽解决方案","authors":"Jasdeep Singh,&nbsp;Shalini Bahel","doi":"10.1007/s10832-024-00372-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the microwave dielectric and shielding properties of MgTiO<sub>3</sub>-based solid solutions across the <i>K</i> (18–26.5 GHz) and <i>Ka</i> (26.5–40 GHz) frequency bands. Synthesized via a conventional solid-state mixed oxide route using MgO and Mg(OH)<sub>2</sub> as raw materials, the dielectric properties of MgTiO<sub>3</sub> and Mg(Ti<sub>0.95</sub>Sn<sub>0.05</sub>)O<sub>3</sub> solid solutions varied with composition and raw material. Results showed that MgO-based materials exhibited higher relative permittivity (<i>ɛ</i><sub><i>r</i></sub>) and loss tangent (<i>tan δ</i>) compared to Mg(OH)<sub>2</sub>-based materials. Furthermore, the <i>ɛ</i><sub><i>r</i></sub> of the prepared samples decreased with Sn<sup>4+</sup> substitution, attributed to the lower dielectric polarizability of Sn<sup>4+</sup> cations compared to Ti<sup>4+</sup> cations. Results also indicated a decrease in <i>tan δ</i> with Sn<sup>4+</sup> substitution, resulting from a reduction in octahedral tilting upon partial replacement of Ti<sup>4+</sup> cations with Sn<sup>4+</sup> cations in MgTiO<sub>3</sub>. Shielding property characterization revealed that all samples exhibited frequency-selective and tunable shielding capabilities, with tuning achievable through variations in composition or shield thickness. Notably, in the <i>K</i> frequency band, MgO-based MgTiO<sub>3</sub> exhibited superior dielectric properties, with a sample thickness of 2.9 mm achieving a shielding effectiveness (SE) of up to 35.62 dB at 22.30 GHz, effectively suppressing over 99.97% of incoming radiation. Similarly, in the Ka frequency band, MgO-based Mg(Ti<sub>0.95</sub>Sn<sub>0.05</sub>)O<sub>3</sub> demonstrated remarkable SE, with a sample thickness of 1.8 mm reaching SE of 38.62 dB at 31.60 GHz, attenuating over 99.98% of incoming radiation. These findings suggest potential for frequency-selective and adjustable EMI shielding in next-gen technologies.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"52 4","pages":"338 - 357"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MgTiO3-based ceramics for enhanced EMI shielding solutions in K and Ka frequency bands\",\"authors\":\"Jasdeep Singh,&nbsp;Shalini Bahel\",\"doi\":\"10.1007/s10832-024-00372-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the microwave dielectric and shielding properties of MgTiO<sub>3</sub>-based solid solutions across the <i>K</i> (18–26.5 GHz) and <i>Ka</i> (26.5–40 GHz) frequency bands. Synthesized via a conventional solid-state mixed oxide route using MgO and Mg(OH)<sub>2</sub> as raw materials, the dielectric properties of MgTiO<sub>3</sub> and Mg(Ti<sub>0.95</sub>Sn<sub>0.05</sub>)O<sub>3</sub> solid solutions varied with composition and raw material. Results showed that MgO-based materials exhibited higher relative permittivity (<i>ɛ</i><sub><i>r</i></sub>) and loss tangent (<i>tan δ</i>) compared to Mg(OH)<sub>2</sub>-based materials. Furthermore, the <i>ɛ</i><sub><i>r</i></sub> of the prepared samples decreased with Sn<sup>4+</sup> substitution, attributed to the lower dielectric polarizability of Sn<sup>4+</sup> cations compared to Ti<sup>4+</sup> cations. Results also indicated a decrease in <i>tan δ</i> with Sn<sup>4+</sup> substitution, resulting from a reduction in octahedral tilting upon partial replacement of Ti<sup>4+</sup> cations with Sn<sup>4+</sup> cations in MgTiO<sub>3</sub>. Shielding property characterization revealed that all samples exhibited frequency-selective and tunable shielding capabilities, with tuning achievable through variations in composition or shield thickness. Notably, in the <i>K</i> frequency band, MgO-based MgTiO<sub>3</sub> exhibited superior dielectric properties, with a sample thickness of 2.9 mm achieving a shielding effectiveness (SE) of up to 35.62 dB at 22.30 GHz, effectively suppressing over 99.97% of incoming radiation. Similarly, in the Ka frequency band, MgO-based Mg(Ti<sub>0.95</sub>Sn<sub>0.05</sub>)O<sub>3</sub> demonstrated remarkable SE, with a sample thickness of 1.8 mm reaching SE of 38.62 dB at 31.60 GHz, attenuating over 99.98% of incoming radiation. These findings suggest potential for frequency-selective and adjustable EMI shielding in next-gen technologies.</p></div>\",\"PeriodicalId\":625,\"journal\":{\"name\":\"Journal of Electroceramics\",\"volume\":\"52 4\",\"pages\":\"338 - 357\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10832-024-00372-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-024-00372-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了mgtio3基固溶体在K (18-26.5 GHz)和Ka (26.5-40 GHz)频段的微波介电和屏蔽性能。以MgO和Mg(OH)2为原料,采用传统的固态混合氧化物方法合成MgTiO3和Mg(Ti0.95Sn0.05)O3固溶体,其介电性能随组成和原料的不同而不同。结果表明,与Mg(OH)2基材料相比,mgo基材料具有更高的相对介电常数(r)和损耗正切(tan δ)。此外,Sn4+取代后,制备样品的ir降低,这是由于Sn4+阳离子的介电极化率比Ti4+阳离子低。结果还表明,Sn4+取代导致tan δ降低,这是由于MgTiO3中部分Ti4+阳离子被Sn4+阳离子取代后,八面体倾斜减少所致。屏蔽性能表征表明,所有样品都具有频率选择性和可调谐的屏蔽能力,可以通过改变成分或屏蔽厚度来实现调谐。值得注意的是,在K频段,mgo基MgTiO3表现出优异的介电性能,2.9 mm的样品厚度在22.30 GHz时的屏蔽效能(SE)高达35.62 dB,有效抑制99.97%以上的入射辐射。同样,在Ka频段,mgo基Mg(Ti0.95Sn0.05)O3表现出显著的SE,样品厚度为1.8 mm,在31.60 GHz时SE达到38.62 dB,衰减了99.98%以上的入射辐射。这些发现表明在下一代技术中具有频率选择性和可调EMI屏蔽的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MgTiO3-based ceramics for enhanced EMI shielding solutions in K and Ka frequency bands

This study investigates the microwave dielectric and shielding properties of MgTiO3-based solid solutions across the K (18–26.5 GHz) and Ka (26.5–40 GHz) frequency bands. Synthesized via a conventional solid-state mixed oxide route using MgO and Mg(OH)2 as raw materials, the dielectric properties of MgTiO3 and Mg(Ti0.95Sn0.05)O3 solid solutions varied with composition and raw material. Results showed that MgO-based materials exhibited higher relative permittivity (ɛr) and loss tangent (tan δ) compared to Mg(OH)2-based materials. Furthermore, the ɛr of the prepared samples decreased with Sn4+ substitution, attributed to the lower dielectric polarizability of Sn4+ cations compared to Ti4+ cations. Results also indicated a decrease in tan δ with Sn4+ substitution, resulting from a reduction in octahedral tilting upon partial replacement of Ti4+ cations with Sn4+ cations in MgTiO3. Shielding property characterization revealed that all samples exhibited frequency-selective and tunable shielding capabilities, with tuning achievable through variations in composition or shield thickness. Notably, in the K frequency band, MgO-based MgTiO3 exhibited superior dielectric properties, with a sample thickness of 2.9 mm achieving a shielding effectiveness (SE) of up to 35.62 dB at 22.30 GHz, effectively suppressing over 99.97% of incoming radiation. Similarly, in the Ka frequency band, MgO-based Mg(Ti0.95Sn0.05)O3 demonstrated remarkable SE, with a sample thickness of 1.8 mm reaching SE of 38.62 dB at 31.60 GHz, attenuating over 99.98% of incoming radiation. These findings suggest potential for frequency-selective and adjustable EMI shielding in next-gen technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electroceramics
Journal of Electroceramics 工程技术-材料科学:硅酸盐
CiteScore
2.80
自引率
5.90%
发文量
22
审稿时长
5.7 months
期刊介绍: While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including: -insulating to metallic and fast ion conductivity -piezo-, ferro-, and pyro-electricity -electro- and nonlinear optical properties -feromagnetism. When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice. The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信