散射机构制导的零弹PolSAR目标识别

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Feng Li , Xiaojing Yang , Liang Zhang , Yanhua Wang , Yuqi Han , Xin Zhang , Yang Li
{"title":"散射机构制导的零弹PolSAR目标识别","authors":"Feng Li ,&nbsp;Xiaojing Yang ,&nbsp;Liang Zhang ,&nbsp;Yanhua Wang ,&nbsp;Yuqi Han ,&nbsp;Xin Zhang ,&nbsp;Yang Li","doi":"10.1016/j.isprsjprs.2024.12.022","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the challenges posed by the difficulty in obtaining polarimetric synthetic aperture radar (PolSAR) data for certain specific categories of targets, we present a zero-shot target recognition method for PolSAR images. Based on a generative model, the method leverages the unique characteristics of polarimetric SAR images and incorporates two key modules: the scattering characteristics-guided semantic embedding generation module (SE) and the polarization characteristics-guided distributional correction module (DC). The former ensures the stability of synthetic features for unseen classes by controlling scattering characteristics. At the same time, the latter enhances the quality of synthetic features by utilizing polarimetric features, thereby improving the accuracy of zero-shot recognition. The proposed method is evaluated on the GOTCHA dataset to assess its performance in recognizing unseen classes. The experiment results demonstrate that the proposed method achieves SOTA performance in zero-shot PolSAR target recognition (<em>e.g.,</em> improving the recognition accuracy of unseen categories by nearly 20%). Our codes are available at <span><span>https://github.com/chuyihuan/Zero-shot-PolSAR-target-recognition</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"220 ","pages":"Pages 428-439"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering mechanism-guided zero-shot PolSAR target recognition\",\"authors\":\"Feng Li ,&nbsp;Xiaojing Yang ,&nbsp;Liang Zhang ,&nbsp;Yanhua Wang ,&nbsp;Yuqi Han ,&nbsp;Xin Zhang ,&nbsp;Yang Li\",\"doi\":\"10.1016/j.isprsjprs.2024.12.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In response to the challenges posed by the difficulty in obtaining polarimetric synthetic aperture radar (PolSAR) data for certain specific categories of targets, we present a zero-shot target recognition method for PolSAR images. Based on a generative model, the method leverages the unique characteristics of polarimetric SAR images and incorporates two key modules: the scattering characteristics-guided semantic embedding generation module (SE) and the polarization characteristics-guided distributional correction module (DC). The former ensures the stability of synthetic features for unseen classes by controlling scattering characteristics. At the same time, the latter enhances the quality of synthetic features by utilizing polarimetric features, thereby improving the accuracy of zero-shot recognition. The proposed method is evaluated on the GOTCHA dataset to assess its performance in recognizing unseen classes. The experiment results demonstrate that the proposed method achieves SOTA performance in zero-shot PolSAR target recognition (<em>e.g.,</em> improving the recognition accuracy of unseen categories by nearly 20%). Our codes are available at <span><span>https://github.com/chuyihuan/Zero-shot-PolSAR-target-recognition</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"220 \",\"pages\":\"Pages 428-439\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624004921\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624004921","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对极化合成孔径雷达(PolSAR)数据难以获取特定类别目标的问题,提出了一种针对PolSAR图像的零射击目标识别方法。该方法基于生成模型,利用极化SAR图像的独特特性,结合散射特征引导的语义嵌入生成模块(SE)和极化特征引导的分布校正模块(DC)两个关键模块。前者通过控制散射特性来保证不可见类合成特征的稳定性。同时,后者利用偏振特征增强合成特征的质量,从而提高零弹识别的精度。在GOTCHA数据集上对该方法进行了评估,以评估其识别未见类的性能。实验结果表明,该方法在零射击PolSAR目标识别中达到了SOTA性能(例如,未见类别的识别精度提高了近20%)。我们的代码可在https://github.com/chuyihuan/Zero-shot-PolSAR-target-recognition上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scattering mechanism-guided zero-shot PolSAR target recognition
In response to the challenges posed by the difficulty in obtaining polarimetric synthetic aperture radar (PolSAR) data for certain specific categories of targets, we present a zero-shot target recognition method for PolSAR images. Based on a generative model, the method leverages the unique characteristics of polarimetric SAR images and incorporates two key modules: the scattering characteristics-guided semantic embedding generation module (SE) and the polarization characteristics-guided distributional correction module (DC). The former ensures the stability of synthetic features for unseen classes by controlling scattering characteristics. At the same time, the latter enhances the quality of synthetic features by utilizing polarimetric features, thereby improving the accuracy of zero-shot recognition. The proposed method is evaluated on the GOTCHA dataset to assess its performance in recognizing unseen classes. The experiment results demonstrate that the proposed method achieves SOTA performance in zero-shot PolSAR target recognition (e.g., improving the recognition accuracy of unseen categories by nearly 20%). Our codes are available at https://github.com/chuyihuan/Zero-shot-PolSAR-target-recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信