卫星图像关注区域动态增强(RoIDE)

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Trong-An Bui;Pei-Jun Lee;John Liobe;Vaidotas Barzdenas;Dainius Udris
{"title":"卫星图像关注区域动态增强(RoIDE)","authors":"Trong-An Bui;Pei-Jun Lee;John Liobe;Vaidotas Barzdenas;Dainius Udris","doi":"10.1109/TGRS.2024.3525411","DOIUrl":null,"url":null,"abstract":"A major challenge in satellite imaging is the wide-ranging brightness levels within a single frame, which can lead to inadequate exposure in shaded regions and overexposure in bright areas. This research proposes a two-stage deep learning architecture, region of interest-focused dynamic enhancement (RoIDE), for multiexposure generation (MEG) and fusion. The first stage generates multiple exposures from a single standard dynamic range (SDR) image, capturing details across different brightness levels. The second stage fuses these images to create a high-contrast, comprehensive image, preserving details in both low and high-exposure regions. This approach allows for focused processing, enhancing regions of interest (RoI) without causing overexposure. Experimental results show significant improvements in the dynamic range of satellite images, particularly in RoIs. Enhanced visibility and detail preservation in both dark and bright areas are achieved, demonstrating the effectiveness of the RoIDE architecture. Nonreference metrics, including perception-based image quality evaluator (PIQE) (34.92), and blind tone-mapped quality index (BTMQI) (0.54), confirm the model’s superior perceptual, spatial, naturalness, and tone-mapped quality. Additionally, image quality assessments using peak signal-to-noise ratio (PSNR) (30.43), learned perceptual image patch similarity (LPIPS) (0.168), and VDP-3 (9.35) show significant improvements over other state-of-the-art models. These advancements are crucial for accurate data analysis in applications relying on satellite imagery.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-14"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Region of Interest-Focused Dynamic Enhancement (RoIDE) for Satellite Images\",\"authors\":\"Trong-An Bui;Pei-Jun Lee;John Liobe;Vaidotas Barzdenas;Dainius Udris\",\"doi\":\"10.1109/TGRS.2024.3525411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major challenge in satellite imaging is the wide-ranging brightness levels within a single frame, which can lead to inadequate exposure in shaded regions and overexposure in bright areas. This research proposes a two-stage deep learning architecture, region of interest-focused dynamic enhancement (RoIDE), for multiexposure generation (MEG) and fusion. The first stage generates multiple exposures from a single standard dynamic range (SDR) image, capturing details across different brightness levels. The second stage fuses these images to create a high-contrast, comprehensive image, preserving details in both low and high-exposure regions. This approach allows for focused processing, enhancing regions of interest (RoI) without causing overexposure. Experimental results show significant improvements in the dynamic range of satellite images, particularly in RoIs. Enhanced visibility and detail preservation in both dark and bright areas are achieved, demonstrating the effectiveness of the RoIDE architecture. Nonreference metrics, including perception-based image quality evaluator (PIQE) (34.92), and blind tone-mapped quality index (BTMQI) (0.54), confirm the model’s superior perceptual, spatial, naturalness, and tone-mapped quality. Additionally, image quality assessments using peak signal-to-noise ratio (PSNR) (30.43), learned perceptual image patch similarity (LPIPS) (0.168), and VDP-3 (9.35) show significant improvements over other state-of-the-art models. These advancements are crucial for accurate data analysis in applications relying on satellite imagery.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"63 \",\"pages\":\"1-14\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10820952/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10820952/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

卫星成像的一个主要挑战是单帧内的亮度水平范围很广,这可能导致阴影区域的曝光不足和明亮区域的曝光过度。本研究提出了一种两阶段深度学习架构,即以兴趣为中心的区域动态增强(RoIDE),用于多曝光生成(MEG)和融合。第一阶段从单个标准动态范围(SDR)图像生成多次曝光,捕获不同亮度水平的细节。第二阶段融合这些图像以创建高对比度、全面的图像,同时保留低曝光和高曝光区域的细节。这种方法允许集中处理,增强感兴趣的区域(RoI),而不会导致过度曝光。实验结果表明,该方法对卫星图像的动态范围,特别是roi的动态范围有显著改善。在黑暗和明亮的区域都实现了增强的可视性和细节保存,证明了RoIDE架构的有效性。非参考指标,包括基于感知的图像质量评价指标(PIQE)(34.92)和盲色调映射质量指数(BTMQI)(0.54),证实了该模型优越的感知、空间、自然性和色调映射质量。此外,使用峰值信噪比(PSNR)(30.43)、学习感知图像斑块相似度(LPIPS)(0.168)和VDP-3(9.35)进行的图像质量评估显示,与其他最先进的模型相比,有了显著的改进。这些进步对于在依赖卫星图像的应用中进行准确的数据分析至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region of Interest-Focused Dynamic Enhancement (RoIDE) for Satellite Images
A major challenge in satellite imaging is the wide-ranging brightness levels within a single frame, which can lead to inadequate exposure in shaded regions and overexposure in bright areas. This research proposes a two-stage deep learning architecture, region of interest-focused dynamic enhancement (RoIDE), for multiexposure generation (MEG) and fusion. The first stage generates multiple exposures from a single standard dynamic range (SDR) image, capturing details across different brightness levels. The second stage fuses these images to create a high-contrast, comprehensive image, preserving details in both low and high-exposure regions. This approach allows for focused processing, enhancing regions of interest (RoI) without causing overexposure. Experimental results show significant improvements in the dynamic range of satellite images, particularly in RoIs. Enhanced visibility and detail preservation in both dark and bright areas are achieved, demonstrating the effectiveness of the RoIDE architecture. Nonreference metrics, including perception-based image quality evaluator (PIQE) (34.92), and blind tone-mapped quality index (BTMQI) (0.54), confirm the model’s superior perceptual, spatial, naturalness, and tone-mapped quality. Additionally, image quality assessments using peak signal-to-noise ratio (PSNR) (30.43), learned perceptual image patch similarity (LPIPS) (0.168), and VDP-3 (9.35) show significant improvements over other state-of-the-art models. These advancements are crucial for accurate data analysis in applications relying on satellite imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信