{"title":"豹:实用的安全两方神经网络推理","authors":"Jun Feng;Yefan Wu;Hong Sun;Shunli Zhang;Debin Liu","doi":"10.1109/TIFS.2025.3526063","DOIUrl":null,"url":null,"abstract":"Secure two-party neural network (2P-NN) inference allows the server with a neural network model and the client with inputs to perform neural network inference without revealing their private data to each other. However, the state-of-the-art 2P-NN inference still suffers from large computation and communication overhead especially when used in ImageNet-scale deep neural networks. In this work, we design and build Panther, a lightweight and efficient secure 2P-NN inference system, which has great efficiency in evaluating 2P-NN inference while safeguarding the privacy of the server and the client. At the core of Panther, we have new protocols for 2P-NN inference. Firstly, we propose a customized homomorphic encryption scheme to reduce burdensome polynomial multiplications in the homomorphic encryption arithmetic circuit of linear protocols. Secondly, we present a more efficient and communication concise design for the millionaires’ protocol, which enables non-linear protocols with less communication cost. Our evaluations over three sought-after varying-scale deep neural networks show that Panther outperforms the state-of-the-art 2P-NN inference systems in terms of end-to-end runtime and communication overhead. Panther achieves state-of-the-art performance with up to <inline-formula> <tex-math>$24.95\\times $ </tex-math></inline-formula> speedup for linear protocols and <inline-formula> <tex-math>$6.40 \\times $ </tex-math></inline-formula> speedup for non-linear protocols in WAN when compared to prior arts.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"1149-1162"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Panther: Practical Secure Two-Party Neural Network Inference\",\"authors\":\"Jun Feng;Yefan Wu;Hong Sun;Shunli Zhang;Debin Liu\",\"doi\":\"10.1109/TIFS.2025.3526063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Secure two-party neural network (2P-NN) inference allows the server with a neural network model and the client with inputs to perform neural network inference without revealing their private data to each other. However, the state-of-the-art 2P-NN inference still suffers from large computation and communication overhead especially when used in ImageNet-scale deep neural networks. In this work, we design and build Panther, a lightweight and efficient secure 2P-NN inference system, which has great efficiency in evaluating 2P-NN inference while safeguarding the privacy of the server and the client. At the core of Panther, we have new protocols for 2P-NN inference. Firstly, we propose a customized homomorphic encryption scheme to reduce burdensome polynomial multiplications in the homomorphic encryption arithmetic circuit of linear protocols. Secondly, we present a more efficient and communication concise design for the millionaires’ protocol, which enables non-linear protocols with less communication cost. Our evaluations over three sought-after varying-scale deep neural networks show that Panther outperforms the state-of-the-art 2P-NN inference systems in terms of end-to-end runtime and communication overhead. Panther achieves state-of-the-art performance with up to <inline-formula> <tex-math>$24.95\\\\times $ </tex-math></inline-formula> speedup for linear protocols and <inline-formula> <tex-math>$6.40 \\\\times $ </tex-math></inline-formula> speedup for non-linear protocols in WAN when compared to prior arts.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"1149-1162\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10824864/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10824864/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Secure two-party neural network (2P-NN) inference allows the server with a neural network model and the client with inputs to perform neural network inference without revealing their private data to each other. However, the state-of-the-art 2P-NN inference still suffers from large computation and communication overhead especially when used in ImageNet-scale deep neural networks. In this work, we design and build Panther, a lightweight and efficient secure 2P-NN inference system, which has great efficiency in evaluating 2P-NN inference while safeguarding the privacy of the server and the client. At the core of Panther, we have new protocols for 2P-NN inference. Firstly, we propose a customized homomorphic encryption scheme to reduce burdensome polynomial multiplications in the homomorphic encryption arithmetic circuit of linear protocols. Secondly, we present a more efficient and communication concise design for the millionaires’ protocol, which enables non-linear protocols with less communication cost. Our evaluations over three sought-after varying-scale deep neural networks show that Panther outperforms the state-of-the-art 2P-NN inference systems in terms of end-to-end runtime and communication overhead. Panther achieves state-of-the-art performance with up to $24.95\times $ speedup for linear protocols and $6.40 \times $ speedup for non-linear protocols in WAN when compared to prior arts.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features