IConDiffNet:用于医学图像配准的无监督逆一致微分同构网络。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Rui Liao, Jeffrey F Williamson, Tianyu Xia, Tao Ge, Joseph A O'Sullivan
{"title":"IConDiffNet:用于医学图像配准的无监督逆一致微分同构网络。","authors":"Rui Liao, Jeffrey F Williamson, Tianyu Xia, Tao Ge, Joseph A O'Sullivan","doi":"10.1088/1361-6560/ada516","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Deformable image registration (DIR) is critical in many medical imaging applications. Diffeomorphic transformations, which are smooth invertible mappings with smooth inverses preserve topological properties and are an anatomically plausible means of constraining the solution space in many settings. Traditional iterative optimization-based diffeomorphic DIR algorithms are computationally costly and are not able to consistently resolve large and complicated deformations in medical image registration. Convolutional neural network implementations can rapidly estimate the transformation in through a pre-trained model. However, the structure design of most neural networks for DIR fails to systematically enforce diffeomorphism and inverse consistency. In this paper, a novel unsupervised neural network structure is proposed to perform a fast, accurate, and inverse-consistent diffeomorphic DIR.<i>Approach.</i>This paper introduces a novel unsupervised inverse-consistent diffeomorphic registration network termed IConDiffNet, which incorporates an energy constraint that minimizes the total energy expended during the deformation process. The IConDiffNet architecture consists of two symmetric paths, each employing multiple recursive cascaded updating blocks (neural networks) to handle different virtual time steps parameterizing the path from the initial undeformed image to the final deformation. These blocks estimate velocities corresponding to specific time steps, generating a series of smooth time-dependent velocity vector fields. Simultaneously, the inverse transformations are estimated by corresponding blocks in the inverse path. By integrating these series of time-dependent velocity fields from both paths, optimal forward and inverse transformations are obtained, aligning the image pair in both directions.<i>Main result.</i>Our proposed method was evaluated on a three-dimensional inter-patient image registration task with a large-scale brain MRI image dataset containing 375 subjects. The proposed IConDiffNet achieves fast and accurate DIR with better DSC, lower Hausdorff distance metric, and lower total energy spent during the deformation in the test dataset compared to competing state-of-the-art deep-learning diffeomorphic DIR approaches. Visualization shows that IConDiffNet produces more complicated transformations that better align structures than the VoxelMorph-Diff, SYMNet, and ANTs-SyN methods.<i>Significance.</i>The proposed IConDiffNet represents an advancement in unsupervised deep-learning-based DIR approaches. By ensuring inverse consistency and diffeomorphic properties in the outcome transformations, IConDiffNet offers a pathway for improved registration accuracy, particularly in clinical settings where diffeomorphic properties are crucial. Furthermore, the generality of IConDiffNet's network structure supports direct extension to diverse 3D image registration challenges. This adaptability is facilitated by the flexibility of the objective function used in optimizing the network, which can be tailored to suit different registration tasks.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IConDiffNet: an unsupervised inverse-consistent diffeomorphic network for medical image registration.\",\"authors\":\"Rui Liao, Jeffrey F Williamson, Tianyu Xia, Tao Ge, Joseph A O'Sullivan\",\"doi\":\"10.1088/1361-6560/ada516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Deformable image registration (DIR) is critical in many medical imaging applications. Diffeomorphic transformations, which are smooth invertible mappings with smooth inverses preserve topological properties and are an anatomically plausible means of constraining the solution space in many settings. Traditional iterative optimization-based diffeomorphic DIR algorithms are computationally costly and are not able to consistently resolve large and complicated deformations in medical image registration. Convolutional neural network implementations can rapidly estimate the transformation in through a pre-trained model. However, the structure design of most neural networks for DIR fails to systematically enforce diffeomorphism and inverse consistency. In this paper, a novel unsupervised neural network structure is proposed to perform a fast, accurate, and inverse-consistent diffeomorphic DIR.<i>Approach.</i>This paper introduces a novel unsupervised inverse-consistent diffeomorphic registration network termed IConDiffNet, which incorporates an energy constraint that minimizes the total energy expended during the deformation process. The IConDiffNet architecture consists of two symmetric paths, each employing multiple recursive cascaded updating blocks (neural networks) to handle different virtual time steps parameterizing the path from the initial undeformed image to the final deformation. These blocks estimate velocities corresponding to specific time steps, generating a series of smooth time-dependent velocity vector fields. Simultaneously, the inverse transformations are estimated by corresponding blocks in the inverse path. By integrating these series of time-dependent velocity fields from both paths, optimal forward and inverse transformations are obtained, aligning the image pair in both directions.<i>Main result.</i>Our proposed method was evaluated on a three-dimensional inter-patient image registration task with a large-scale brain MRI image dataset containing 375 subjects. The proposed IConDiffNet achieves fast and accurate DIR with better DSC, lower Hausdorff distance metric, and lower total energy spent during the deformation in the test dataset compared to competing state-of-the-art deep-learning diffeomorphic DIR approaches. Visualization shows that IConDiffNet produces more complicated transformations that better align structures than the VoxelMorph-Diff, SYMNet, and ANTs-SyN methods.<i>Significance.</i>The proposed IConDiffNet represents an advancement in unsupervised deep-learning-based DIR approaches. By ensuring inverse consistency and diffeomorphic properties in the outcome transformations, IConDiffNet offers a pathway for improved registration accuracy, particularly in clinical settings where diffeomorphic properties are crucial. Furthermore, the generality of IConDiffNet's network structure supports direct extension to diverse 3D image registration challenges. This adaptability is facilitated by the flexibility of the objective function used in optimizing the network, which can be tailored to suit different registration tasks.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ada516\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ada516","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的无监督逆一致差分胚配准网络IConDiffNet,该网络引入了能量约束,使变形过程中消耗的总能量最小化。IConDiffNet架构由两个对称路径组成,每个路径使用多个递归级联更新块(神经网络)来处理不同的虚拟时间步,参数化从初始未变形图像到最终变形图像的路径。这些块估计速度对应于特定的时间步长,产生一系列光滑的时间相关的速度矢量场。同时,通过逆路径中相应的块来估计逆变换。通过对两个路径上的这些随时间变化的速度场序列进行积分,得到最优的正变换和逆变换,使图像对在两个方向上对齐。我们对包含375个受试者的大规模脑MRI图像数据集的3D图像配准任务评估了我们提出的方法。与竞争最先进的基于dl的diffomorphic DIR方法相比,所提出的IConDiffNet实现了快速准确的DIR,具有更好的Dice分数、更低的Hausdorff距离度量和更低的测试数据集中变形期间消耗的总能量。可视化显示,IConDiffNet比voxelmoph - diff、SYMNet和ANTs-SyN方法产生更复杂的转换,更好地对齐结构。 ;提出的IConDiffNet代表了基于无监督深度学习的DIR方法的进步。通过确保结果转换的逆一致性和微同构特性,IConDiffNet提供了提高注册准确性的途径,特别是在微同构特性至关重要的临床环境中。此外,IConDiffNet的网络结构的通用性支持直接扩展到不同的3D图像配准挑战。这种适应性是由优化网络时使用的目标函数的灵活性所促进的,它可以适应不同的配准任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IConDiffNet: an unsupervised inverse-consistent diffeomorphic network for medical image registration.

Objective.Deformable image registration (DIR) is critical in many medical imaging applications. Diffeomorphic transformations, which are smooth invertible mappings with smooth inverses preserve topological properties and are an anatomically plausible means of constraining the solution space in many settings. Traditional iterative optimization-based diffeomorphic DIR algorithms are computationally costly and are not able to consistently resolve large and complicated deformations in medical image registration. Convolutional neural network implementations can rapidly estimate the transformation in through a pre-trained model. However, the structure design of most neural networks for DIR fails to systematically enforce diffeomorphism and inverse consistency. In this paper, a novel unsupervised neural network structure is proposed to perform a fast, accurate, and inverse-consistent diffeomorphic DIR.Approach.This paper introduces a novel unsupervised inverse-consistent diffeomorphic registration network termed IConDiffNet, which incorporates an energy constraint that minimizes the total energy expended during the deformation process. The IConDiffNet architecture consists of two symmetric paths, each employing multiple recursive cascaded updating blocks (neural networks) to handle different virtual time steps parameterizing the path from the initial undeformed image to the final deformation. These blocks estimate velocities corresponding to specific time steps, generating a series of smooth time-dependent velocity vector fields. Simultaneously, the inverse transformations are estimated by corresponding blocks in the inverse path. By integrating these series of time-dependent velocity fields from both paths, optimal forward and inverse transformations are obtained, aligning the image pair in both directions.Main result.Our proposed method was evaluated on a three-dimensional inter-patient image registration task with a large-scale brain MRI image dataset containing 375 subjects. The proposed IConDiffNet achieves fast and accurate DIR with better DSC, lower Hausdorff distance metric, and lower total energy spent during the deformation in the test dataset compared to competing state-of-the-art deep-learning diffeomorphic DIR approaches. Visualization shows that IConDiffNet produces more complicated transformations that better align structures than the VoxelMorph-Diff, SYMNet, and ANTs-SyN methods.Significance.The proposed IConDiffNet represents an advancement in unsupervised deep-learning-based DIR approaches. By ensuring inverse consistency and diffeomorphic properties in the outcome transformations, IConDiffNet offers a pathway for improved registration accuracy, particularly in clinical settings where diffeomorphic properties are crucial. Furthermore, the generality of IConDiffNet's network structure supports direct extension to diverse 3D image registration challenges. This adaptability is facilitated by the flexibility of the objective function used in optimizing the network, which can be tailored to suit different registration tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信