Núria Puig, Pol Camps-Renom, Martin Hermansson, Ana Aguilera-Simón, Rebeca Marín, Olga Bautista, Noemi Rotllan, Nerea Blanco-Sanroman, Maria Constanza Domine, Katariina Öörni, José Luis Sánchez-Quesada, Sonia Benitez
{"title":"缺血性卒中合并颈动脉粥样硬化后LDL和HDL的改变在1年后逆转。","authors":"Núria Puig, Pol Camps-Renom, Martin Hermansson, Ana Aguilera-Simón, Rebeca Marín, Olga Bautista, Noemi Rotllan, Nerea Blanco-Sanroman, Maria Constanza Domine, Katariina Öörni, José Luis Sánchez-Quesada, Sonia Benitez","doi":"10.1016/j.jlr.2024.100739","DOIUrl":null,"url":null,"abstract":"<p><p>Approximately, 20% of ischemic strokes are attributed to the presence of atherosclerosis. Lipoproteins play a crucial role in the development of atherosclerosis, with LDL promoting atherogenesis and HDL inhibiting it. Therefore, both their concentrations and their biological properties are decisive factors in atherosclerotic processes. In this study, we examined the qualitative properties of lipoproteins in ischemic stroke patients with carotid atherosclerosis. Lipoproteins were isolated from the blood of healthy controls (n = 27) and patients with carotid atherosclerosis (n = 64) at 7 days and 1 year postischemic stroke. Compared to controls, patients' LDL 7 days poststroke showed increased levels of apoC-III, triacylglycerol, and ceramide, along with decreased cholesterol and phospholipid content. LDL from patients induced more inflammation in macrophages than did LDL from controls. HDL isolated from patients 7 days after stroke showed alterations in the apolipoprotein cargo, with reduced levels of apoA-I and increased levels of apoA-II, and apoC-III compared to controls. Patients' HDL also showed a higher electronegative charge than that of controls and partially lost its ability to counteract the modification of LDL and the inflammatory effects of modified LDL. One year after stroke onset, the composition of patients' LDL and HDL resembled those of the controls. In parallel, LDL and HDL gained positive charge, LDL became less prone to oxidation and aggregation, and HDL regained protective properties. In conclusion, LDL and HDL in ischemic stroke patients with carotid atherosclerosis exhibited alterations in composition and function, which were partially reversed 1 year after stroke.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100739"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alterations in LDL and HDL after an ischemic stroke associated with carotid atherosclerosis are reversed after 1 year.\",\"authors\":\"Núria Puig, Pol Camps-Renom, Martin Hermansson, Ana Aguilera-Simón, Rebeca Marín, Olga Bautista, Noemi Rotllan, Nerea Blanco-Sanroman, Maria Constanza Domine, Katariina Öörni, José Luis Sánchez-Quesada, Sonia Benitez\",\"doi\":\"10.1016/j.jlr.2024.100739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Approximately, 20% of ischemic strokes are attributed to the presence of atherosclerosis. Lipoproteins play a crucial role in the development of atherosclerosis, with LDL promoting atherogenesis and HDL inhibiting it. Therefore, both their concentrations and their biological properties are decisive factors in atherosclerotic processes. In this study, we examined the qualitative properties of lipoproteins in ischemic stroke patients with carotid atherosclerosis. Lipoproteins were isolated from the blood of healthy controls (n = 27) and patients with carotid atherosclerosis (n = 64) at 7 days and 1 year postischemic stroke. Compared to controls, patients' LDL 7 days poststroke showed increased levels of apoC-III, triacylglycerol, and ceramide, along with decreased cholesterol and phospholipid content. LDL from patients induced more inflammation in macrophages than did LDL from controls. HDL isolated from patients 7 days after stroke showed alterations in the apolipoprotein cargo, with reduced levels of apoA-I and increased levels of apoA-II, and apoC-III compared to controls. Patients' HDL also showed a higher electronegative charge than that of controls and partially lost its ability to counteract the modification of LDL and the inflammatory effects of modified LDL. One year after stroke onset, the composition of patients' LDL and HDL resembled those of the controls. In parallel, LDL and HDL gained positive charge, LDL became less prone to oxidation and aggregation, and HDL regained protective properties. In conclusion, LDL and HDL in ischemic stroke patients with carotid atherosclerosis exhibited alterations in composition and function, which were partially reversed 1 year after stroke.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100739\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2024.100739\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100739","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Alterations in LDL and HDL after an ischemic stroke associated with carotid atherosclerosis are reversed after 1 year.
Approximately, 20% of ischemic strokes are attributed to the presence of atherosclerosis. Lipoproteins play a crucial role in the development of atherosclerosis, with LDL promoting atherogenesis and HDL inhibiting it. Therefore, both their concentrations and their biological properties are decisive factors in atherosclerotic processes. In this study, we examined the qualitative properties of lipoproteins in ischemic stroke patients with carotid atherosclerosis. Lipoproteins were isolated from the blood of healthy controls (n = 27) and patients with carotid atherosclerosis (n = 64) at 7 days and 1 year postischemic stroke. Compared to controls, patients' LDL 7 days poststroke showed increased levels of apoC-III, triacylglycerol, and ceramide, along with decreased cholesterol and phospholipid content. LDL from patients induced more inflammation in macrophages than did LDL from controls. HDL isolated from patients 7 days after stroke showed alterations in the apolipoprotein cargo, with reduced levels of apoA-I and increased levels of apoA-II, and apoC-III compared to controls. Patients' HDL also showed a higher electronegative charge than that of controls and partially lost its ability to counteract the modification of LDL and the inflammatory effects of modified LDL. One year after stroke onset, the composition of patients' LDL and HDL resembled those of the controls. In parallel, LDL and HDL gained positive charge, LDL became less prone to oxidation and aggregation, and HDL regained protective properties. In conclusion, LDL and HDL in ischemic stroke patients with carotid atherosclerosis exhibited alterations in composition and function, which were partially reversed 1 year after stroke.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.