Tuğcan Korak, Merve Gulsen Bal Albayrak, Murat Kasap, Gurler Akpinar
{"title":"百里醌与乳腺癌代谢重编程:来自蛋白质组学分析的新维度。","authors":"Tuğcan Korak, Merve Gulsen Bal Albayrak, Murat Kasap, Gurler Akpinar","doi":"10.1002/jbt.70124","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Thymoquinone (TQ) has shown antitumorigenic effects in breast cancer; however, its detailed impact on cell signaling mechanisms requires further investigation. This study aims to elucidate the molecular mechanisms behind TQ's antiproliferative effects in breast cancer by analyzing proteome-level changes. MCF-7 cells were treated with 15 µM TQ, the inhibitory concentration (IC50), for 48 h. Proteins from treated and untreated (control) groups were isolated and subjected to liquid chromatography–tandem mass spectrometry (LC–MS/MS) proteomic analysis. Identified proteins were functionally annotated, with hub proteins identified using Cytoscape software, and verification conducted through Western blot analysis. Label-free quantitation identified 629 master proteins, with 104 upregulated and 477 downregulated in TQ-treated samples compared to controls. Among these, 150 proteins showed dramatic regulation, including 11 upregulated and 139 downregulated proteins, with ribosomal proteins emerging as central. The heatmap demonstrated robust clustering of replicates. Functional annotations indicated that TQ significantly impacts crucial mechanisms such as carbon metabolism, amino acid biosynthesis, protein synthesis, and the citrate cycle, essential for metabolic reprogramming. This study identifies novel molecular targets associated with metabolic reprogramming, previously underexplored in TQ's effects, highlighting their pivotal role in TQ's anticancer mechanisms in breast cancer. These findings could lay the groundwork for developing future TQ-based therapies.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thymoquinone and Metabolic Reprogramming in Breast Cancer: A New Dimension From Proteomic Analysis\",\"authors\":\"Tuğcan Korak, Merve Gulsen Bal Albayrak, Murat Kasap, Gurler Akpinar\",\"doi\":\"10.1002/jbt.70124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Thymoquinone (TQ) has shown antitumorigenic effects in breast cancer; however, its detailed impact on cell signaling mechanisms requires further investigation. This study aims to elucidate the molecular mechanisms behind TQ's antiproliferative effects in breast cancer by analyzing proteome-level changes. MCF-7 cells were treated with 15 µM TQ, the inhibitory concentration (IC50), for 48 h. Proteins from treated and untreated (control) groups were isolated and subjected to liquid chromatography–tandem mass spectrometry (LC–MS/MS) proteomic analysis. Identified proteins were functionally annotated, with hub proteins identified using Cytoscape software, and verification conducted through Western blot analysis. Label-free quantitation identified 629 master proteins, with 104 upregulated and 477 downregulated in TQ-treated samples compared to controls. Among these, 150 proteins showed dramatic regulation, including 11 upregulated and 139 downregulated proteins, with ribosomal proteins emerging as central. The heatmap demonstrated robust clustering of replicates. Functional annotations indicated that TQ significantly impacts crucial mechanisms such as carbon metabolism, amino acid biosynthesis, protein synthesis, and the citrate cycle, essential for metabolic reprogramming. This study identifies novel molecular targets associated with metabolic reprogramming, previously underexplored in TQ's effects, highlighting their pivotal role in TQ's anticancer mechanisms in breast cancer. These findings could lay the groundwork for developing future TQ-based therapies.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70124\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70124","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Thymoquinone and Metabolic Reprogramming in Breast Cancer: A New Dimension From Proteomic Analysis
Thymoquinone (TQ) has shown antitumorigenic effects in breast cancer; however, its detailed impact on cell signaling mechanisms requires further investigation. This study aims to elucidate the molecular mechanisms behind TQ's antiproliferative effects in breast cancer by analyzing proteome-level changes. MCF-7 cells were treated with 15 µM TQ, the inhibitory concentration (IC50), for 48 h. Proteins from treated and untreated (control) groups were isolated and subjected to liquid chromatography–tandem mass spectrometry (LC–MS/MS) proteomic analysis. Identified proteins were functionally annotated, with hub proteins identified using Cytoscape software, and verification conducted through Western blot analysis. Label-free quantitation identified 629 master proteins, with 104 upregulated and 477 downregulated in TQ-treated samples compared to controls. Among these, 150 proteins showed dramatic regulation, including 11 upregulated and 139 downregulated proteins, with ribosomal proteins emerging as central. The heatmap demonstrated robust clustering of replicates. Functional annotations indicated that TQ significantly impacts crucial mechanisms such as carbon metabolism, amino acid biosynthesis, protein synthesis, and the citrate cycle, essential for metabolic reprogramming. This study identifies novel molecular targets associated with metabolic reprogramming, previously underexplored in TQ's effects, highlighting their pivotal role in TQ's anticancer mechanisms in breast cancer. These findings could lay the groundwork for developing future TQ-based therapies.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.