Haiyan Fu , Qiuhong Wang , Haiwen Li , Hongjuan Li , Jie Li , Yu Liu , Futao Dang , Lifeng Wang , Xuan Zhang , Yongrui Yang , Yingrong Du
{"title":"通过miR-338-3p/ATG12轴调节自噬抑制肝细胞癌进展。","authors":"Haiyan Fu , Qiuhong Wang , Haiwen Li , Hongjuan Li , Jie Li , Yu Liu , Futao Dang , Lifeng Wang , Xuan Zhang , Yongrui Yang , Yingrong Du","doi":"10.1016/j.yexcr.2024.114398","DOIUrl":null,"url":null,"abstract":"<div><div>Hepatocellular carcinoma (HCC), the most common primary liver cancer, is marked by a high mortality rate, with the misregulation of long non-coding RNAs (LncRNAs) playing a key role in its development. Here, we studied the role of LINC02987 in HCC. We employed bioinformatics tools to identify LncRNAs and miRNAs that exhibit differential expression in HCC. Quantitative real-time reverse transcription PCR (RT-qPCR) and Western blot analysis were utilized to quantify gene and protein expression levels. The interaction between miR-338-3p and LINC02987 or ATG12 was confirmed through dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. We observed that LINC02987 was overexpressed in HCC tumor tissues and cell lines. Silencing of LINC02987 led to a reduction in cell viability, diminished clonogenic potential, and attenuated invasive and migratory capabilities. Also, decreasing protein level and fluorescence intensity of the autophagy-associated LC3 I/II. In HCC, miR-338-3p expression was downregulated, while inversely correlates with the overexpression of the autophagy protein ATG12. Mimicking miR-338-3p suppresses the activity of both LINC02987 and ATG12, as evidenced by reduced luciferase signals in corresponding reporter assays. Mimicking miR-338-3p suppresses the activity of both LINC02987 and ATG12, as evidenced by reduced luciferase signals in reporter assays. Transfection with si-LINC02987 decreased ATG12 expression, an effect that was partially reversed by miR-338-3p knockdown. Inhibition of miR-338-3p or overexpression of ATG12 increased LC3 I/II protein levels. Our results indicate that LINC02987 sequesters miR-338-3p, leading to increased ATG12 and promoting autophagy in HCC cells. These results highlight the potential of LINC02987 as a therapeutic target for the treatment of HCC.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"444 2","pages":"Article 114398"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LINC02987 suppression hepatocellular carcinoma progression by modulating autophagy via the miR-338-3p/ATG12 axis\",\"authors\":\"Haiyan Fu , Qiuhong Wang , Haiwen Li , Hongjuan Li , Jie Li , Yu Liu , Futao Dang , Lifeng Wang , Xuan Zhang , Yongrui Yang , Yingrong Du\",\"doi\":\"10.1016/j.yexcr.2024.114398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hepatocellular carcinoma (HCC), the most common primary liver cancer, is marked by a high mortality rate, with the misregulation of long non-coding RNAs (LncRNAs) playing a key role in its development. Here, we studied the role of LINC02987 in HCC. We employed bioinformatics tools to identify LncRNAs and miRNAs that exhibit differential expression in HCC. Quantitative real-time reverse transcription PCR (RT-qPCR) and Western blot analysis were utilized to quantify gene and protein expression levels. The interaction between miR-338-3p and LINC02987 or ATG12 was confirmed through dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. We observed that LINC02987 was overexpressed in HCC tumor tissues and cell lines. Silencing of LINC02987 led to a reduction in cell viability, diminished clonogenic potential, and attenuated invasive and migratory capabilities. Also, decreasing protein level and fluorescence intensity of the autophagy-associated LC3 I/II. In HCC, miR-338-3p expression was downregulated, while inversely correlates with the overexpression of the autophagy protein ATG12. Mimicking miR-338-3p suppresses the activity of both LINC02987 and ATG12, as evidenced by reduced luciferase signals in corresponding reporter assays. Mimicking miR-338-3p suppresses the activity of both LINC02987 and ATG12, as evidenced by reduced luciferase signals in reporter assays. Transfection with si-LINC02987 decreased ATG12 expression, an effect that was partially reversed by miR-338-3p knockdown. Inhibition of miR-338-3p or overexpression of ATG12 increased LC3 I/II protein levels. Our results indicate that LINC02987 sequesters miR-338-3p, leading to increased ATG12 and promoting autophagy in HCC cells. These results highlight the potential of LINC02987 as a therapeutic target for the treatment of HCC.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"444 2\",\"pages\":\"Article 114398\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482724004890\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724004890","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
LINC02987 suppression hepatocellular carcinoma progression by modulating autophagy via the miR-338-3p/ATG12 axis
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is marked by a high mortality rate, with the misregulation of long non-coding RNAs (LncRNAs) playing a key role in its development. Here, we studied the role of LINC02987 in HCC. We employed bioinformatics tools to identify LncRNAs and miRNAs that exhibit differential expression in HCC. Quantitative real-time reverse transcription PCR (RT-qPCR) and Western blot analysis were utilized to quantify gene and protein expression levels. The interaction between miR-338-3p and LINC02987 or ATG12 was confirmed through dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. We observed that LINC02987 was overexpressed in HCC tumor tissues and cell lines. Silencing of LINC02987 led to a reduction in cell viability, diminished clonogenic potential, and attenuated invasive and migratory capabilities. Also, decreasing protein level and fluorescence intensity of the autophagy-associated LC3 I/II. In HCC, miR-338-3p expression was downregulated, while inversely correlates with the overexpression of the autophagy protein ATG12. Mimicking miR-338-3p suppresses the activity of both LINC02987 and ATG12, as evidenced by reduced luciferase signals in corresponding reporter assays. Mimicking miR-338-3p suppresses the activity of both LINC02987 and ATG12, as evidenced by reduced luciferase signals in reporter assays. Transfection with si-LINC02987 decreased ATG12 expression, an effect that was partially reversed by miR-338-3p knockdown. Inhibition of miR-338-3p or overexpression of ATG12 increased LC3 I/II protein levels. Our results indicate that LINC02987 sequesters miR-338-3p, leading to increased ATG12 and promoting autophagy in HCC cells. These results highlight the potential of LINC02987 as a therapeutic target for the treatment of HCC.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.