{"title":"TRIM32通过控制肝脏中胰岛素受体的降解来调节胰岛素敏感性。","authors":"Shilpa Thakur, Priya Rawat, Budheswar Dehury, Prosenjit Mondal","doi":"10.1038/s44319-024-00348-7","DOIUrl":null,"url":null,"abstract":"<p><p>Impaired insulin receptor signaling is strongly linked to obesity-related metabolic conditions like non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes (T2DM). However, the exact mechanisms behind impaired insulin receptor (INSR) signaling in obesity induced by a high-fat diet remain elusive. In this study, we identify an E3 ubiquitin ligase, tripartite motif-containing protein 32 (TRIM32), as a key regulator of hepatic insulin signaling that targets the insulin receptor (INSR) for ubiquitination and proteasomal degradation in high-fat diet (HFD) mice. HFD induces the nuclear translocation of SREBP-1c (Sterol Regulatory Element-Binding Protein 1c), resulting in increased expression of TRIM32 in hepatocytes. TRIM32 ubiquitylates INSR and facilitates its proteasomal degradation, leading to severe insulin resistance and fat accumulation within the liver of high-fat diet induced obese (DIO) mice. Conversely, liver-specific knockdown of TRIM32 enhances INSR expression and hepatic insulin sensitivity. Reduced AMPK signaling and phosphorylation of SREBP-1c at S372 in high-fat DIO mice promotes the nuclear translocation of SREBP-1c, leading to increased TRIM32 expression. In conclusion, our results demonstrate that TRIM32 promotes diet-induced hepatic insulin resistance by targeting the INSR to degradation.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRIM32 regulates insulin sensitivity by controlling insulin receptor degradation in the liver.\",\"authors\":\"Shilpa Thakur, Priya Rawat, Budheswar Dehury, Prosenjit Mondal\",\"doi\":\"10.1038/s44319-024-00348-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Impaired insulin receptor signaling is strongly linked to obesity-related metabolic conditions like non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes (T2DM). However, the exact mechanisms behind impaired insulin receptor (INSR) signaling in obesity induced by a high-fat diet remain elusive. In this study, we identify an E3 ubiquitin ligase, tripartite motif-containing protein 32 (TRIM32), as a key regulator of hepatic insulin signaling that targets the insulin receptor (INSR) for ubiquitination and proteasomal degradation in high-fat diet (HFD) mice. HFD induces the nuclear translocation of SREBP-1c (Sterol Regulatory Element-Binding Protein 1c), resulting in increased expression of TRIM32 in hepatocytes. TRIM32 ubiquitylates INSR and facilitates its proteasomal degradation, leading to severe insulin resistance and fat accumulation within the liver of high-fat diet induced obese (DIO) mice. Conversely, liver-specific knockdown of TRIM32 enhances INSR expression and hepatic insulin sensitivity. Reduced AMPK signaling and phosphorylation of SREBP-1c at S372 in high-fat DIO mice promotes the nuclear translocation of SREBP-1c, leading to increased TRIM32 expression. In conclusion, our results demonstrate that TRIM32 promotes diet-induced hepatic insulin resistance by targeting the INSR to degradation.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-024-00348-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00348-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
TRIM32 regulates insulin sensitivity by controlling insulin receptor degradation in the liver.
Impaired insulin receptor signaling is strongly linked to obesity-related metabolic conditions like non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes (T2DM). However, the exact mechanisms behind impaired insulin receptor (INSR) signaling in obesity induced by a high-fat diet remain elusive. In this study, we identify an E3 ubiquitin ligase, tripartite motif-containing protein 32 (TRIM32), as a key regulator of hepatic insulin signaling that targets the insulin receptor (INSR) for ubiquitination and proteasomal degradation in high-fat diet (HFD) mice. HFD induces the nuclear translocation of SREBP-1c (Sterol Regulatory Element-Binding Protein 1c), resulting in increased expression of TRIM32 in hepatocytes. TRIM32 ubiquitylates INSR and facilitates its proteasomal degradation, leading to severe insulin resistance and fat accumulation within the liver of high-fat diet induced obese (DIO) mice. Conversely, liver-specific knockdown of TRIM32 enhances INSR expression and hepatic insulin sensitivity. Reduced AMPK signaling and phosphorylation of SREBP-1c at S372 in high-fat DIO mice promotes the nuclear translocation of SREBP-1c, leading to increased TRIM32 expression. In conclusion, our results demonstrate that TRIM32 promotes diet-induced hepatic insulin resistance by targeting the INSR to degradation.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.