{"title":"基因组中杂合性事件丢失的动力学。","authors":"Abhishek Dutta, Joseph Schacherer","doi":"10.1038/s44319-024-00353-w","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic instability is a hallmark of tumorigenesis, yet it also plays an essential role in evolution. Large-scale population genomics studies have highlighted the importance of loss of heterozygosity (LOH) events, which have long been overlooked in the context of genetic diversity and instability. Among various types of genomic mutations, LOH events are the most common and affect a larger portion of the genome. They typically arise from recombination-mediated repair of double-strand breaks (DSBs) or from lesions that are processed into DSBs. LOH events are critical drivers of genetic diversity, enabling rapid phenotypic variation and contributing to tumorigenesis. Understanding the accumulation of LOH, along with its underlying mechanisms, distribution, and phenotypic consequences, is therefore crucial. In this review, we explore the spectrum of LOH events, their mechanisms, and their impact on fitness and phenotype, drawing insights from Saccharomyces cerevisiae to cancer. We also emphasize the role of LOH in genomic instability, disease, and genome evolution.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dynamics of loss of heterozygosity events in genomes.\",\"authors\":\"Abhishek Dutta, Joseph Schacherer\",\"doi\":\"10.1038/s44319-024-00353-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genomic instability is a hallmark of tumorigenesis, yet it also plays an essential role in evolution. Large-scale population genomics studies have highlighted the importance of loss of heterozygosity (LOH) events, which have long been overlooked in the context of genetic diversity and instability. Among various types of genomic mutations, LOH events are the most common and affect a larger portion of the genome. They typically arise from recombination-mediated repair of double-strand breaks (DSBs) or from lesions that are processed into DSBs. LOH events are critical drivers of genetic diversity, enabling rapid phenotypic variation and contributing to tumorigenesis. Understanding the accumulation of LOH, along with its underlying mechanisms, distribution, and phenotypic consequences, is therefore crucial. In this review, we explore the spectrum of LOH events, their mechanisms, and their impact on fitness and phenotype, drawing insights from Saccharomyces cerevisiae to cancer. We also emphasize the role of LOH in genomic instability, disease, and genome evolution.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-024-00353-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00353-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The dynamics of loss of heterozygosity events in genomes.
Genomic instability is a hallmark of tumorigenesis, yet it also plays an essential role in evolution. Large-scale population genomics studies have highlighted the importance of loss of heterozygosity (LOH) events, which have long been overlooked in the context of genetic diversity and instability. Among various types of genomic mutations, LOH events are the most common and affect a larger portion of the genome. They typically arise from recombination-mediated repair of double-strand breaks (DSBs) or from lesions that are processed into DSBs. LOH events are critical drivers of genetic diversity, enabling rapid phenotypic variation and contributing to tumorigenesis. Understanding the accumulation of LOH, along with its underlying mechanisms, distribution, and phenotypic consequences, is therefore crucial. In this review, we explore the spectrum of LOH events, their mechanisms, and their impact on fitness and phenotype, drawing insights from Saccharomyces cerevisiae to cancer. We also emphasize the role of LOH in genomic instability, disease, and genome evolution.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.