以自然数演化的离散动力系统族的轨道。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0233348
Eric Campos Cantón
{"title":"以自然数演化的离散动力系统族的轨道。","authors":"Eric Campos Cantón","doi":"10.1063/5.0233348","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we give a class of one-dimensional discrete dynamical systems with state space N+. This class of systems is defined by two parameters: one of them sets the number of nearest neighbors that determine the rule of evolution, and the other parameter determines a segment of natural numbers Λ={1,2,…,b}. In particular, we investigate the behavior of a class of one-dimensional maps where an integer moves to an other integer given by the sum of the nearest neighbors minus a multiple of b∈N+. We find the coexistence of fixed points and periodic cycles. Two single parameter families of maps are introduced and their dynamics in the segment of natural sequence Λ. Furthermore, an order of the numbers of the set Λ-b is given by these families. Last, we present a connection of the N+ generated by the orbits of a particular case.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbits of families of discrete dynamical systems evolving in the natural numbers.\",\"authors\":\"Eric Campos Cantón\",\"doi\":\"10.1063/5.0233348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we give a class of one-dimensional discrete dynamical systems with state space N+. This class of systems is defined by two parameters: one of them sets the number of nearest neighbors that determine the rule of evolution, and the other parameter determines a segment of natural numbers Λ={1,2,…,b}. In particular, we investigate the behavior of a class of one-dimensional maps where an integer moves to an other integer given by the sum of the nearest neighbors minus a multiple of b∈N+. We find the coexistence of fixed points and periodic cycles. Two single parameter families of maps are introduced and their dynamics in the segment of natural sequence Λ. Furthermore, an order of the numbers of the set Λ-b is given by these families. Last, we present a connection of the N+ generated by the orbits of a particular case.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0233348\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0233348","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一类状态空间为 N+ 的一维离散动力系统。该类系统由两个参数定义:其中一个参数设置决定演化规则的近邻数,另一个参数决定自然数Λ={1,2,...,b}的一段。我们特别研究了一类一维映射的行为,在这一类映射中,一个整数移动到另一个整数,而这个整数是由最近邻数之和减去 b∈N+ 的倍数得到的。我们发现定点和周期循环共存。介绍了两个单参数映射族及其在自然序列Λ段中的动力学。此外,这些族给出了集合Λ-b 的数量级。最后,我们介绍了由特定情况下的轨道生成的 N+ 的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orbits of families of discrete dynamical systems evolving in the natural numbers.

In this paper, we give a class of one-dimensional discrete dynamical systems with state space N+. This class of systems is defined by two parameters: one of them sets the number of nearest neighbors that determine the rule of evolution, and the other parameter determines a segment of natural numbers Λ={1,2,…,b}. In particular, we investigate the behavior of a class of one-dimensional maps where an integer moves to an other integer given by the sum of the nearest neighbors minus a multiple of b∈N+. We find the coexistence of fixed points and periodic cycles. Two single parameter families of maps are introduced and their dynamics in the segment of natural sequence Λ. Furthermore, an order of the numbers of the set Λ-b is given by these families. Last, we present a connection of the N+ generated by the orbits of a particular case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信