{"title":"多种群Kuramoto-Sakaguchi振荡子的亚稳态。","authors":"Bojun Li, Nariya Uchida","doi":"10.1063/5.0220321","DOIUrl":null,"url":null,"abstract":"<p><p>An Ott-Antonsen reduced M-population of Kuramoto-Sakaguchi oscillators is investigated, focusing on the influence of the phase-lag parameter α on the collective dynamics. For oscillator populations coupled on a ring, we obtained a wide variety of spatiotemporal patterns, including coherent states, traveling waves, partially synchronized states, modulated states, and incoherent states. Back-and-forth transitions between these states are found, which suggest metastability. Linear stability analysis reveals the stable regions of coherent states with different winding numbers q. Within certain α ranges, the system settles into stable traveling wave solutions despite the coherent states also being linearly stable. For around α≈0.46π, the system displays the most frequent metastable transitions between coherent states and partially synchronized states, while for α closer to π/2, metastable transitions arise between partially synchronized states and modulated states. This model captures metastable dynamics akin to brain activity, offering insights into the synchronization of brain networks.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metastability of multi-population Kuramoto-Sakaguchi oscillators.\",\"authors\":\"Bojun Li, Nariya Uchida\",\"doi\":\"10.1063/5.0220321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An Ott-Antonsen reduced M-population of Kuramoto-Sakaguchi oscillators is investigated, focusing on the influence of the phase-lag parameter α on the collective dynamics. For oscillator populations coupled on a ring, we obtained a wide variety of spatiotemporal patterns, including coherent states, traveling waves, partially synchronized states, modulated states, and incoherent states. Back-and-forth transitions between these states are found, which suggest metastability. Linear stability analysis reveals the stable regions of coherent states with different winding numbers q. Within certain α ranges, the system settles into stable traveling wave solutions despite the coherent states also being linearly stable. For around α≈0.46π, the system displays the most frequent metastable transitions between coherent states and partially synchronized states, while for α closer to π/2, metastable transitions arise between partially synchronized states and modulated states. This model captures metastable dynamics akin to brain activity, offering insights into the synchronization of brain networks.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0220321\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0220321","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Metastability of multi-population Kuramoto-Sakaguchi oscillators.
An Ott-Antonsen reduced M-population of Kuramoto-Sakaguchi oscillators is investigated, focusing on the influence of the phase-lag parameter α on the collective dynamics. For oscillator populations coupled on a ring, we obtained a wide variety of spatiotemporal patterns, including coherent states, traveling waves, partially synchronized states, modulated states, and incoherent states. Back-and-forth transitions between these states are found, which suggest metastability. Linear stability analysis reveals the stable regions of coherent states with different winding numbers q. Within certain α ranges, the system settles into stable traveling wave solutions despite the coherent states also being linearly stable. For around α≈0.46π, the system displays the most frequent metastable transitions between coherent states and partially synchronized states, while for α closer to π/2, metastable transitions arise between partially synchronized states and modulated states. This model captures metastable dynamics akin to brain activity, offering insights into the synchronization of brain networks.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.