针对糖基化的新型抗癌药物的发现:氟化单糖类似物的出现。

IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Ana F Costa, Andreia Teixeira, Celso A Reis, Catarina Gomes
{"title":"针对糖基化的新型抗癌药物的发现:氟化单糖类似物的出现。","authors":"Ana F Costa, Andreia Teixeira, Celso A Reis, Catarina Gomes","doi":"10.1080/17460441.2024.2444375","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Glycosylation is an essential enzymatic process of building glycan structures that occur mainly within the cell and gives rise to a diversity of cell surface and secreted glycoconjugates. These glycoconjugates play vital roles, for instance in cellcell adhesion, interaction and communication, activation of cell surface receptors, inflammatory response and immune recognition. This controlled and wellcoordinated enzymatic process is altered in cancer, leading to the biosynthesis of cancerassociated glycans, which impact glycandependent biological roles.</p><p><strong>Areas covered: </strong>In this review, the authors discuss the importance of targeting cancerassociated glycans through potent glycan biosynthesis inhibitors. It focuses on the use of analogs, providing an overview of findings involving these in cancer. The highly explored fluorinated monosaccharide analogs targeting aberrant glycosylation are described, aiming to inspire advances in the field.</p><p><strong>Expert opinion: </strong>Altered glycosylation, such as increased sialylation and fucosylation, is a feature in cancer and has been shown to play key roles in several malignant properties of cancer cells. Strategies aiming at remodeling cancer cells´ glycome are emerging and present a huge potential for cancer therapy. Fluorinated monosaccharides have been gathering promising preclinical results as novel cancer drugs. Nevertheless, cancer specific targeting strategies must be considered to avoid significant sideeffects.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1-11"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel anticancer drug discovery efforts targeting glycosylation: the emergence of fluorinated monosaccharides analogs.\",\"authors\":\"Ana F Costa, Andreia Teixeira, Celso A Reis, Catarina Gomes\",\"doi\":\"10.1080/17460441.2024.2444375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Glycosylation is an essential enzymatic process of building glycan structures that occur mainly within the cell and gives rise to a diversity of cell surface and secreted glycoconjugates. These glycoconjugates play vital roles, for instance in cellcell adhesion, interaction and communication, activation of cell surface receptors, inflammatory response and immune recognition. This controlled and wellcoordinated enzymatic process is altered in cancer, leading to the biosynthesis of cancerassociated glycans, which impact glycandependent biological roles.</p><p><strong>Areas covered: </strong>In this review, the authors discuss the importance of targeting cancerassociated glycans through potent glycan biosynthesis inhibitors. It focuses on the use of analogs, providing an overview of findings involving these in cancer. The highly explored fluorinated monosaccharide analogs targeting aberrant glycosylation are described, aiming to inspire advances in the field.</p><p><strong>Expert opinion: </strong>Altered glycosylation, such as increased sialylation and fucosylation, is a feature in cancer and has been shown to play key roles in several malignant properties of cancer cells. Strategies aiming at remodeling cancer cells´ glycome are emerging and present a huge potential for cancer therapy. Fluorinated monosaccharides have been gathering promising preclinical results as novel cancer drugs. Nevertheless, cancer specific targeting strategies must be considered to avoid significant sideeffects.</p>\",\"PeriodicalId\":12267,\"journal\":{\"name\":\"Expert Opinion on Drug Discovery\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Drug Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17460441.2024.2444375\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2024.2444375","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

糖基化是构建糖基结构的基本酶促过程,主要发生在细胞内,并引起细胞表面和分泌糖缀合物的多样性。这些糖缀合物在细胞粘附、相互作用和通讯、细胞表面受体的激活、炎症反应和免疫识别等方面发挥着至关重要的作用。这种受控制和协调良好的酶促过程在癌症中发生改变,导致癌症相关聚糖的生物合成,从而影响聚糖依赖的生物学作用。涵盖的领域:在这篇综述中,作者讨论了通过有效的聚糖生物合成抑制剂靶向癌症相关聚糖的重要性。它侧重于类似物的使用,并概述了这些类似物在癌症中的研究结果。描述了高度开发的针对异常糖基化的氟化单糖类似物,旨在激发该领域的进展。专家意见:糖基化的改变,如唾液化和聚焦化的增加,是癌症的一个特征,并已被证明在癌细胞的几种恶性特性中起关键作用。旨在重塑癌细胞糖糖的策略正在出现,并为癌症治疗提供了巨大的潜力。氟化单糖作为一种新型抗癌药物在临床前取得了良好的效果。然而,必须考虑癌症特异性靶向策略,以避免显著的副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel anticancer drug discovery efforts targeting glycosylation: the emergence of fluorinated monosaccharides analogs.

Introduction: Glycosylation is an essential enzymatic process of building glycan structures that occur mainly within the cell and gives rise to a diversity of cell surface and secreted glycoconjugates. These glycoconjugates play vital roles, for instance in cellcell adhesion, interaction and communication, activation of cell surface receptors, inflammatory response and immune recognition. This controlled and wellcoordinated enzymatic process is altered in cancer, leading to the biosynthesis of cancerassociated glycans, which impact glycandependent biological roles.

Areas covered: In this review, the authors discuss the importance of targeting cancerassociated glycans through potent glycan biosynthesis inhibitors. It focuses on the use of analogs, providing an overview of findings involving these in cancer. The highly explored fluorinated monosaccharide analogs targeting aberrant glycosylation are described, aiming to inspire advances in the field.

Expert opinion: Altered glycosylation, such as increased sialylation and fucosylation, is a feature in cancer and has been shown to play key roles in several malignant properties of cancer cells. Strategies aiming at remodeling cancer cells´ glycome are emerging and present a huge potential for cancer therapy. Fluorinated monosaccharides have been gathering promising preclinical results as novel cancer drugs. Nevertheless, cancer specific targeting strategies must be considered to avoid significant sideeffects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.20
自引率
1.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development. The Editors welcome: Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信