William T Redman, Dean Huang, Maria Fonoberova, Igor Mezić
{"title":"库普曼情景记忆学习。","authors":"William T Redman, Dean Huang, Maria Fonoberova, Igor Mezić","doi":"10.1063/5.0245244","DOIUrl":null,"url":null,"abstract":"<p><p>Koopman operator theory has found significant success in learning models of complex, real-world dynamical systems, enabling prediction and control. The greater interpretability and lower computational costs of these models, compared to traditional machine learning methodologies, make Koopman learning an especially appealing approach. Despite this, little work has been performed on endowing Koopman learning with the ability to leverage its own failures. To address this, we equip Koopman methods-developed for predicting non-autonomous time series-with an episodic memory mechanism, enabling global recall of (or attention to) periods in time where similar dynamics previously occurred. We find that a basic implementation of Koopman learning with episodic memory leads to significant improvements in prediction on synthetic and real-world data. Our framework has considerable potential for expansion, allowing for future advances, and opens exciting new directions for Koopman learning.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Koopman learning with episodic memory.\",\"authors\":\"William T Redman, Dean Huang, Maria Fonoberova, Igor Mezić\",\"doi\":\"10.1063/5.0245244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Koopman operator theory has found significant success in learning models of complex, real-world dynamical systems, enabling prediction and control. The greater interpretability and lower computational costs of these models, compared to traditional machine learning methodologies, make Koopman learning an especially appealing approach. Despite this, little work has been performed on endowing Koopman learning with the ability to leverage its own failures. To address this, we equip Koopman methods-developed for predicting non-autonomous time series-with an episodic memory mechanism, enabling global recall of (or attention to) periods in time where similar dynamics previously occurred. We find that a basic implementation of Koopman learning with episodic memory leads to significant improvements in prediction on synthetic and real-world data. Our framework has considerable potential for expansion, allowing for future advances, and opens exciting new directions for Koopman learning.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0245244\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0245244","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Koopman operator theory has found significant success in learning models of complex, real-world dynamical systems, enabling prediction and control. The greater interpretability and lower computational costs of these models, compared to traditional machine learning methodologies, make Koopman learning an especially appealing approach. Despite this, little work has been performed on endowing Koopman learning with the ability to leverage its own failures. To address this, we equip Koopman methods-developed for predicting non-autonomous time series-with an episodic memory mechanism, enabling global recall of (or attention to) periods in time where similar dynamics previously occurred. We find that a basic implementation of Koopman learning with episodic memory leads to significant improvements in prediction on synthetic and real-world data. Our framework has considerable potential for expansion, allowing for future advances, and opens exciting new directions for Koopman learning.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.