在异性恋网络中识别癌症驱动基因的简化图神经网络研究。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xingyi Li, Jialuo Xu, Junming Li, Jia Gu, Xuequn Shang
{"title":"在异性恋网络中识别癌症驱动基因的简化图神经网络研究。","authors":"Xingyi Li, Jialuo Xu, Junming Li, Jia Gu, Xuequn Shang","doi":"10.1093/bib/bbae691","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of cancer driver genes is crucial for understanding the complex processes involved in cancer development, progression, and therapeutic strategies. Multi-omics data and biological networks provided by numerous databases enable the application of graph deep learning techniques that incorporate network structures into the deep learning framework. However, most existing methods do not account for the heterophily in the biological networks, which hinders the improvement of model performance. Meanwhile, feature confusion often arises in models based on graph neural networks in such graphs. To address this, we propose a Simplified Graph neural network for identifying Cancer Driver genes in heterophilic networks (SGCD), which comprises primarily two components: a graph convolutional neural network with representation separation and a bimodal feature extractor. The results demonstrate that SGCD not only performs exceptionally well but also exhibits robust discriminative capabilities compared to state-of-the-art methods across all benchmark datasets. Moreover, subsequent interpretability experiments on both the model and biological aspects provide compelling evidence supporting the reliability of SGCD. Additionally, the model can dissect gene modules, revealing clearer connections between driver genes in cancers. We are confident that SGCD holds potential in the field of precision oncology and may be applied to prognosticate biomarkers for a wide range of complex diseases.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697181/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards simplified graph neural networks for identifying cancer driver genes in heterophilic networks.\",\"authors\":\"Xingyi Li, Jialuo Xu, Junming Li, Jia Gu, Xuequn Shang\",\"doi\":\"10.1093/bib/bbae691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The identification of cancer driver genes is crucial for understanding the complex processes involved in cancer development, progression, and therapeutic strategies. Multi-omics data and biological networks provided by numerous databases enable the application of graph deep learning techniques that incorporate network structures into the deep learning framework. However, most existing methods do not account for the heterophily in the biological networks, which hinders the improvement of model performance. Meanwhile, feature confusion often arises in models based on graph neural networks in such graphs. To address this, we propose a Simplified Graph neural network for identifying Cancer Driver genes in heterophilic networks (SGCD), which comprises primarily two components: a graph convolutional neural network with representation separation and a bimodal feature extractor. The results demonstrate that SGCD not only performs exceptionally well but also exhibits robust discriminative capabilities compared to state-of-the-art methods across all benchmark datasets. Moreover, subsequent interpretability experiments on both the model and biological aspects provide compelling evidence supporting the reliability of SGCD. Additionally, the model can dissect gene modules, revealing clearer connections between driver genes in cancers. We are confident that SGCD holds potential in the field of precision oncology and may be applied to prognosticate biomarkers for a wide range of complex diseases.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697181/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae691\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae691","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

癌症驱动基因的识别对于理解癌症发生、进展和治疗策略的复杂过程至关重要。由众多数据库提供的多组学数据和生物网络使图深度学习技术的应用能够将网络结构整合到深度学习框架中。然而,现有的大多数方法都没有考虑到生物网络中的异质性,这阻碍了模型性能的提高。同时,基于图神经网络的模型在这类图中也经常出现特征混淆。为了解决这个问题,我们提出了一个用于识别异亲网络(SGCD)中癌症驱动基因的简化图神经网络,该网络主要由两个部分组成:具有表示分离的图卷积神经网络和双峰特征提取器。结果表明,与所有基准数据集上最先进的方法相比,SGCD不仅表现得非常好,而且表现出强大的判别能力。此外,随后在模型和生物学方面的可解释性实验为支持SGCD的可靠性提供了令人信服的证据。此外,该模型可以解剖基因模块,揭示癌症驱动基因之间更清晰的联系。我们相信,SGCD在精确肿瘤学领域具有潜力,并可应用于预测各种复杂疾病的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards simplified graph neural networks for identifying cancer driver genes in heterophilic networks.

The identification of cancer driver genes is crucial for understanding the complex processes involved in cancer development, progression, and therapeutic strategies. Multi-omics data and biological networks provided by numerous databases enable the application of graph deep learning techniques that incorporate network structures into the deep learning framework. However, most existing methods do not account for the heterophily in the biological networks, which hinders the improvement of model performance. Meanwhile, feature confusion often arises in models based on graph neural networks in such graphs. To address this, we propose a Simplified Graph neural network for identifying Cancer Driver genes in heterophilic networks (SGCD), which comprises primarily two components: a graph convolutional neural network with representation separation and a bimodal feature extractor. The results demonstrate that SGCD not only performs exceptionally well but also exhibits robust discriminative capabilities compared to state-of-the-art methods across all benchmark datasets. Moreover, subsequent interpretability experiments on both the model and biological aspects provide compelling evidence supporting the reliability of SGCD. Additionally, the model can dissect gene modules, revealing clearer connections between driver genes in cancers. We are confident that SGCD holds potential in the field of precision oncology and may be applied to prognosticate biomarkers for a wide range of complex diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信