了解bFGF折叠与神经细胞潜在的细胞保护机制。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2025-01-21 Epub Date: 2025-01-03 DOI:10.1021/acs.biochem.4c00297
Robert J Allsopp, Jeffery B Klauda
{"title":"了解bFGF折叠与神经细胞潜在的细胞保护机制。","authors":"Robert J Allsopp, Jeffery B Klauda","doi":"10.1021/acs.biochem.4c00297","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a serious health condition that affects an increasing number of people, especially veterans and athletes. TBI causes serious consequences because of its long-lasting impact on the brain and its alarming frequency of occurrence. Although the brain has some natural protective mechanisms, the processes that trigger them are poorly understood. Fibroblast growth factor (FGF) proteins interact with receptor proteins to protect cells. Gaps in the literature include how basic-FGF (bFGF) is activated by heparin, can heparin-like molecules induce neural protection, and the effect of allosteric binding on bFGF activity. To fill the gap in our understanding, we applied temperature replica exchange to study the influence of heparin binding to bFGF and how mutations in bFGF influence stability. A new favorable binding site was identified by comparing free energies computed from the potential of mean force (PMF). Although the varied sugars studied resulted in different interactions with bFGF compared to heparin, they each produced structural effects similar to those of bFGF that likely facilitate receptor binding and signaling. Our results also demonstrate how point mutations can trigger the same conformational change that is believed to promote favorable interactions with the receptor. A deeper atomic-level understanding of how chemicals are released during TBI is needed to improve the development of new treatments for TBI and could contribute to a better understanding of other diseases.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"509-524"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Folding of bFGF and Potential Cellular Protective Mechanisms of Neural Cells.\",\"authors\":\"Robert J Allsopp, Jeffery B Klauda\",\"doi\":\"10.1021/acs.biochem.4c00297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic brain injury (TBI) is a serious health condition that affects an increasing number of people, especially veterans and athletes. TBI causes serious consequences because of its long-lasting impact on the brain and its alarming frequency of occurrence. Although the brain has some natural protective mechanisms, the processes that trigger them are poorly understood. Fibroblast growth factor (FGF) proteins interact with receptor proteins to protect cells. Gaps in the literature include how basic-FGF (bFGF) is activated by heparin, can heparin-like molecules induce neural protection, and the effect of allosteric binding on bFGF activity. To fill the gap in our understanding, we applied temperature replica exchange to study the influence of heparin binding to bFGF and how mutations in bFGF influence stability. A new favorable binding site was identified by comparing free energies computed from the potential of mean force (PMF). Although the varied sugars studied resulted in different interactions with bFGF compared to heparin, they each produced structural effects similar to those of bFGF that likely facilitate receptor binding and signaling. Our results also demonstrate how point mutations can trigger the same conformational change that is believed to promote favorable interactions with the receptor. A deeper atomic-level understanding of how chemicals are released during TBI is needed to improve the development of new treatments for TBI and could contribute to a better understanding of other diseases.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"509-524\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00297\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00297","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

创伤性脑损伤(TBI)是一种严重的健康问题,影响着越来越多的人,尤其是退伍军人和运动员。创伤性脑损伤会对大脑造成长期影响,而且发生频率惊人,因此会造成严重后果。虽然大脑有一些天然的保护机制,但人们对触发这些机制的过程知之甚少。成纤维细胞生长因子(FGF)蛋白与受体蛋白相互作用保护细胞。文献中的空白包括碱性 FGF(bFGF)如何被肝素激活、肝素样分子能否诱导神经保护以及异构结合对 bFGF 活性的影响。为了填补认识上的空白,我们采用温度复制交换法研究了肝素与 bFGF 结合的影响,以及 bFGF 的突变如何影响稳定性。通过比较平均力势(PMF)计算出的自由能,我们发现了一个新的有利结合位点。虽然与肝素相比,所研究的各种糖与 bFGF 的相互作用不同,但它们都产生了与 bFGF 相似的结构效应,这可能会促进受体结合和信号传导。我们的研究结果还证明了点突变如何引发相同的构象变化,而这种变化被认为能促进与受体的有利相互作用。为了更好地开发治疗创伤性脑损伤的新方法,我们需要从原子层面深入了解创伤性脑损伤期间化学物质是如何释放的,这也有助于更好地了解其他疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Folding of bFGF and Potential Cellular Protective Mechanisms of Neural Cells.

Traumatic brain injury (TBI) is a serious health condition that affects an increasing number of people, especially veterans and athletes. TBI causes serious consequences because of its long-lasting impact on the brain and its alarming frequency of occurrence. Although the brain has some natural protective mechanisms, the processes that trigger them are poorly understood. Fibroblast growth factor (FGF) proteins interact with receptor proteins to protect cells. Gaps in the literature include how basic-FGF (bFGF) is activated by heparin, can heparin-like molecules induce neural protection, and the effect of allosteric binding on bFGF activity. To fill the gap in our understanding, we applied temperature replica exchange to study the influence of heparin binding to bFGF and how mutations in bFGF influence stability. A new favorable binding site was identified by comparing free energies computed from the potential of mean force (PMF). Although the varied sugars studied resulted in different interactions with bFGF compared to heparin, they each produced structural effects similar to those of bFGF that likely facilitate receptor binding and signaling. Our results also demonstrate how point mutations can trigger the same conformational change that is believed to promote favorable interactions with the receptor. A deeper atomic-level understanding of how chemicals are released during TBI is needed to improve the development of new treatments for TBI and could contribute to a better understanding of other diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信