纳米系统在Nexus:导航鼻部到脑部的胶质母细胞瘤治疗。

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Pharmaceutics Pub Date : 2025-02-03 Epub Date: 2025-01-02 DOI:10.1021/acs.molpharmaceut.4c00703
Tejas Girish Agnihotri, Akanksha Dahifale, Shyam Sudhakar Gomte, Biswajit Rout, Vasu Peddinti, Aakanchha Jain
{"title":"纳米系统在Nexus:导航鼻部到脑部的胶质母细胞瘤治疗。","authors":"Tejas Girish Agnihotri, Akanksha Dahifale, Shyam Sudhakar Gomte, Biswajit Rout, Vasu Peddinti, Aakanchha Jain","doi":"10.1021/acs.molpharmaceut.4c00703","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is considered to be one of the most devastating brain tumors with a shorter life expectancy. Several factors contribute to the dismal prognosis of GBM patients including the complicated nature of GBM, the ability of tumor cells to resist treatment, and the difficulty of delivering drugs to the brain because of barriers like the blood-brain barrier (BBB) and blood-tumor barrier (BTB). The unique challenges posed by the BBB in delivering therapeutic agents to the brain have led to the development of innovative nanotechnology-based approaches. By exploiting the olfactory/trigeminal pathway, nanosystems offer a promising strategy for targeted drug delivery to the brain, glioblastoma tumors in particular. This review contemplates varied nanocarriers, including polymeric nanoparticles, lipid-based nanosystems, in situ gel formulations, peptide, and stem cell-based nanoformulations, signifying their utility in brain targeting with minimal systemic side effects. Emerging trends in gene therapy and immunotherapy in the context of GBM treatment have also been discussed. Since safety is a paramount aspect for any drug product to get approved, this review also delves into toxicological considerations associated with intranasal delivery of nanosystems. Regulatory aspects and critical factors for the successful development of intranasal products are also explored in this review. Overall, this review underscores the significant advancements in nanotechnology for nose-to-brain delivery and its potential impact on GBM management.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"599-619"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanosystems at Nexus: Navigating Nose-to-Brain Delivery for Glioblastoma Treatment.\",\"authors\":\"Tejas Girish Agnihotri, Akanksha Dahifale, Shyam Sudhakar Gomte, Biswajit Rout, Vasu Peddinti, Aakanchha Jain\",\"doi\":\"10.1021/acs.molpharmaceut.4c00703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma multiforme (GBM) is considered to be one of the most devastating brain tumors with a shorter life expectancy. Several factors contribute to the dismal prognosis of GBM patients including the complicated nature of GBM, the ability of tumor cells to resist treatment, and the difficulty of delivering drugs to the brain because of barriers like the blood-brain barrier (BBB) and blood-tumor barrier (BTB). The unique challenges posed by the BBB in delivering therapeutic agents to the brain have led to the development of innovative nanotechnology-based approaches. By exploiting the olfactory/trigeminal pathway, nanosystems offer a promising strategy for targeted drug delivery to the brain, glioblastoma tumors in particular. This review contemplates varied nanocarriers, including polymeric nanoparticles, lipid-based nanosystems, in situ gel formulations, peptide, and stem cell-based nanoformulations, signifying their utility in brain targeting with minimal systemic side effects. Emerging trends in gene therapy and immunotherapy in the context of GBM treatment have also been discussed. Since safety is a paramount aspect for any drug product to get approved, this review also delves into toxicological considerations associated with intranasal delivery of nanosystems. Regulatory aspects and critical factors for the successful development of intranasal products are also explored in this review. Overall, this review underscores the significant advancements in nanotechnology for nose-to-brain delivery and its potential impact on GBM management.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"599-619\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c00703\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00703","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

多形性胶质母细胞瘤(GBM)被认为是最具破坏性的脑肿瘤之一,其预期寿命较短。多种因素导致GBM患者预后不佳,包括GBM的复杂性,肿瘤细胞抵抗治疗的能力,以及由于血脑屏障(BBB)和血肿瘤屏障(BTB)等屏障而难以将药物输送到大脑。血脑屏障在向大脑输送治疗剂方面所面临的独特挑战导致了基于创新纳米技术的方法的发展。通过利用嗅觉/三叉神经通路,纳米系统为靶向药物输送到大脑,特别是胶质母细胞瘤肿瘤提供了一种很有前途的策略。这篇综述考虑了不同的纳米载体,包括聚合纳米颗粒、基于脂质的纳米系统、原位凝胶配方、肽和基于干细胞的纳米配方,表明了它们在脑靶向中的应用,并且系统副作用最小。在GBM治疗的背景下,基因治疗和免疫治疗的新趋势也进行了讨论。由于安全性是任何药物获得批准的最重要的方面,本综述还深入研究了与鼻内给药纳米系统相关的毒理学考虑。本综述还探讨了鼻内产品成功开发的监管方面和关键因素。总的来说,这篇综述强调了纳米技术在鼻到脑输送方面的重大进展及其对GBM治疗的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanosystems at Nexus: Navigating Nose-to-Brain Delivery for Glioblastoma Treatment.

Glioblastoma multiforme (GBM) is considered to be one of the most devastating brain tumors with a shorter life expectancy. Several factors contribute to the dismal prognosis of GBM patients including the complicated nature of GBM, the ability of tumor cells to resist treatment, and the difficulty of delivering drugs to the brain because of barriers like the blood-brain barrier (BBB) and blood-tumor barrier (BTB). The unique challenges posed by the BBB in delivering therapeutic agents to the brain have led to the development of innovative nanotechnology-based approaches. By exploiting the olfactory/trigeminal pathway, nanosystems offer a promising strategy for targeted drug delivery to the brain, glioblastoma tumors in particular. This review contemplates varied nanocarriers, including polymeric nanoparticles, lipid-based nanosystems, in situ gel formulations, peptide, and stem cell-based nanoformulations, signifying their utility in brain targeting with minimal systemic side effects. Emerging trends in gene therapy and immunotherapy in the context of GBM treatment have also been discussed. Since safety is a paramount aspect for any drug product to get approved, this review also delves into toxicological considerations associated with intranasal delivery of nanosystems. Regulatory aspects and critical factors for the successful development of intranasal products are also explored in this review. Overall, this review underscores the significant advancements in nanotechnology for nose-to-brain delivery and its potential impact on GBM management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信