{"title":"一种基于量子退火和直觉推理的电子呼叫重新定位算法","authors":"Chao Wang;Yiyun Shi;Sumin Wang","doi":"10.23919/ICN.2024.0020","DOIUrl":null,"url":null,"abstract":"Currently, the challenge lies in the traditional intelligent algorithm's ability to effectively address the e-hailing repositioning issue. Accurately identifying the underlying characteristics in extensive traffic data within a limited timeframe is difficult, ultimately preventing the achievement of the most optimal solution. This paper suggests a hybrid computing architecture involving reinforcement learning and quantum annealing based on intuitive reasoning. Intuitive reasoning aims to enhance performance in scenarios with poor system robustness, complex tasks, and diverse goals. A deep learning model is constructed, trained to extract scene features, and combined with expert knowledge, then transformed into a quantum annealable form. The final strategy is obtained using a D-wave quantum computer with quantum tunneling effect, which helps in finding optimal solutions by jumping out of local suboptimal solutions. Based on 400 000 real data, four algorithms are compared: minimum-cost flow, sequential markov decision process, hot-dot strategy, and driver-prefer strategy. The average total revenue increases by about 10% and vehicle utilization by about 15% in various scenarios. In summary, the proposed architecture effectively solves the e-hailing reposition problem, offering new directions for robust artificial intelligence in big data decision problems.","PeriodicalId":100681,"journal":{"name":"Intelligent and Converged Networks","volume":"5 4","pages":"317-335"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820898","citationCount":"0","resultStr":"{\"title\":\"A Reposition Algorithm for E-Hailing Based on Quantum Annealing and Intuitive Reasoning\",\"authors\":\"Chao Wang;Yiyun Shi;Sumin Wang\",\"doi\":\"10.23919/ICN.2024.0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, the challenge lies in the traditional intelligent algorithm's ability to effectively address the e-hailing repositioning issue. Accurately identifying the underlying characteristics in extensive traffic data within a limited timeframe is difficult, ultimately preventing the achievement of the most optimal solution. This paper suggests a hybrid computing architecture involving reinforcement learning and quantum annealing based on intuitive reasoning. Intuitive reasoning aims to enhance performance in scenarios with poor system robustness, complex tasks, and diverse goals. A deep learning model is constructed, trained to extract scene features, and combined with expert knowledge, then transformed into a quantum annealable form. The final strategy is obtained using a D-wave quantum computer with quantum tunneling effect, which helps in finding optimal solutions by jumping out of local suboptimal solutions. Based on 400 000 real data, four algorithms are compared: minimum-cost flow, sequential markov decision process, hot-dot strategy, and driver-prefer strategy. The average total revenue increases by about 10% and vehicle utilization by about 15% in various scenarios. In summary, the proposed architecture effectively solves the e-hailing reposition problem, offering new directions for robust artificial intelligence in big data decision problems.\",\"PeriodicalId\":100681,\"journal\":{\"name\":\"Intelligent and Converged Networks\",\"volume\":\"5 4\",\"pages\":\"317-335\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820898\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent and Converged Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10820898/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent and Converged Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10820898/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Reposition Algorithm for E-Hailing Based on Quantum Annealing and Intuitive Reasoning
Currently, the challenge lies in the traditional intelligent algorithm's ability to effectively address the e-hailing repositioning issue. Accurately identifying the underlying characteristics in extensive traffic data within a limited timeframe is difficult, ultimately preventing the achievement of the most optimal solution. This paper suggests a hybrid computing architecture involving reinforcement learning and quantum annealing based on intuitive reasoning. Intuitive reasoning aims to enhance performance in scenarios with poor system robustness, complex tasks, and diverse goals. A deep learning model is constructed, trained to extract scene features, and combined with expert knowledge, then transformed into a quantum annealable form. The final strategy is obtained using a D-wave quantum computer with quantum tunneling effect, which helps in finding optimal solutions by jumping out of local suboptimal solutions. Based on 400 000 real data, four algorithms are compared: minimum-cost flow, sequential markov decision process, hot-dot strategy, and driver-prefer strategy. The average total revenue increases by about 10% and vehicle utilization by about 15% in various scenarios. In summary, the proposed architecture effectively solves the e-hailing reposition problem, offering new directions for robust artificial intelligence in big data decision problems.