{"title":"实现中性点箝位三电平逆变器中性点电压平衡、共模电压和开关损耗降低的新型调制策略","authors":"Donghan Liu;Jinping Wang;Shengyu Liu;Weidong Jiang","doi":"10.23919/CJEE.2024.000080","DOIUrl":null,"url":null,"abstract":"Carrier-based pulse width modulation (CBPWM) and virtual space vector pulse width modulation (VSVPWM) are briefly reviewed for neutral-point-clamped three-level inverters (NPC TLI). A new modulation strategy referred to as N3S_CBPWM is then proposed to simultaneously consider multiple goals, such as the-neutral-point voltage (NPV) balance, switching loss, and common-mode voltage (CMV) reduction. For N3S_CBPWM in each switching cycle, the three-phase switching actions are zero, one, and two. In addition, the constraint conditions of the modulation waves are provided based on the reduction of the CMV. Subsequently, N3S_CBPWM, CBPWM, and VSVPWM are compared in terms of the NPV balance capability, switching loss, and CMV reduction. Finally, the feasibility and superiority of the proposed N3S_CBPWM are verified experimentally.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"10 4","pages":"106-118"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10596097","citationCount":"0","resultStr":"{\"title\":\"Novel Modulation Strategy to Achieve Neutral-point Voltage Balance, Common-mode Voltage, and Switching Loss Reduction for Neutral-point Clamped Three-level Inverters\",\"authors\":\"Donghan Liu;Jinping Wang;Shengyu Liu;Weidong Jiang\",\"doi\":\"10.23919/CJEE.2024.000080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carrier-based pulse width modulation (CBPWM) and virtual space vector pulse width modulation (VSVPWM) are briefly reviewed for neutral-point-clamped three-level inverters (NPC TLI). A new modulation strategy referred to as N3S_CBPWM is then proposed to simultaneously consider multiple goals, such as the-neutral-point voltage (NPV) balance, switching loss, and common-mode voltage (CMV) reduction. For N3S_CBPWM in each switching cycle, the three-phase switching actions are zero, one, and two. In addition, the constraint conditions of the modulation waves are provided based on the reduction of the CMV. Subsequently, N3S_CBPWM, CBPWM, and VSVPWM are compared in terms of the NPV balance capability, switching loss, and CMV reduction. Finally, the feasibility and superiority of the proposed N3S_CBPWM are verified experimentally.\",\"PeriodicalId\":36428,\"journal\":{\"name\":\"Chinese Journal of Electrical Engineering\",\"volume\":\"10 4\",\"pages\":\"106-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10596097\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electrical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10596097/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10596097/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Novel Modulation Strategy to Achieve Neutral-point Voltage Balance, Common-mode Voltage, and Switching Loss Reduction for Neutral-point Clamped Three-level Inverters
Carrier-based pulse width modulation (CBPWM) and virtual space vector pulse width modulation (VSVPWM) are briefly reviewed for neutral-point-clamped three-level inverters (NPC TLI). A new modulation strategy referred to as N3S_CBPWM is then proposed to simultaneously consider multiple goals, such as the-neutral-point voltage (NPV) balance, switching loss, and common-mode voltage (CMV) reduction. For N3S_CBPWM in each switching cycle, the three-phase switching actions are zero, one, and two. In addition, the constraint conditions of the modulation waves are provided based on the reduction of the CMV. Subsequently, N3S_CBPWM, CBPWM, and VSVPWM are compared in terms of the NPV balance capability, switching loss, and CMV reduction. Finally, the feasibility and superiority of the proposed N3S_CBPWM are verified experimentally.