Adam Kubrak, Rajka Pejanovic, Kahinga Kamau, Danuta Kruk, Fabien Ferrage and Giacomo Parigi
{"title":"生物分子系统的场依赖弛豫谱","authors":"Adam Kubrak, Rajka Pejanovic, Kahinga Kamau, Danuta Kruk, Fabien Ferrage and Giacomo Parigi","doi":"10.1039/D4CP04306E","DOIUrl":null,"url":null,"abstract":"<p >The function of biomolecular systems, including biological macromolecules, often crucially depends on their dynamics. Nuclear magnetic resonance (NMR) is one of the most informative methods used to study biomolecules and their internal mobility, with atomic resolution, in near-physiological conditions. NMR relaxation profiles, obtained from the field dependence of the nuclear relaxation rates, in particular, offer the possibility to probe dynamic processes over a wide range of time scales. Relaxation profiles are routinely acquired using field-cycling relaxometers operating at a maximum field of the order of 1 T. These measurements however suffer from a lack of resolution. On the other hand, relaxation rates measured at the high magnetic fields (>4 T) of high resolution NMR spectrometers contain poor information on motions on timescales longer than few nanoseconds. The possibility to acquire relaxation profiles extended to low fields but with high resolution, obtained by shuttling the sample back and forth in the stray field of a high-field spectrometer, is expected to dramatically improve the potentialities of NMR relaxometry. Here, we review investigations of relaxometry in a wide range of biomolecular systems, such as proteins, phospholipids, or biological fluids. Although multiple models of motions have been developed to describe the relaxation rates and their field dependence, most experimental investigations rely on the model-free approach. A variety of relaxation profiles of both diamagnetic and paramagnetic biomolecular systems are here reviewed and analysed using point dipole–point dipole interaction models.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 4","pages":" 1756-1771"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d4cp04306e?page=search","citationCount":"0","resultStr":"{\"title\":\"Field-dependent relaxation profiles of biomolecular systems\",\"authors\":\"Adam Kubrak, Rajka Pejanovic, Kahinga Kamau, Danuta Kruk, Fabien Ferrage and Giacomo Parigi\",\"doi\":\"10.1039/D4CP04306E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The function of biomolecular systems, including biological macromolecules, often crucially depends on their dynamics. Nuclear magnetic resonance (NMR) is one of the most informative methods used to study biomolecules and their internal mobility, with atomic resolution, in near-physiological conditions. NMR relaxation profiles, obtained from the field dependence of the nuclear relaxation rates, in particular, offer the possibility to probe dynamic processes over a wide range of time scales. Relaxation profiles are routinely acquired using field-cycling relaxometers operating at a maximum field of the order of 1 T. These measurements however suffer from a lack of resolution. On the other hand, relaxation rates measured at the high magnetic fields (>4 T) of high resolution NMR spectrometers contain poor information on motions on timescales longer than few nanoseconds. The possibility to acquire relaxation profiles extended to low fields but with high resolution, obtained by shuttling the sample back and forth in the stray field of a high-field spectrometer, is expected to dramatically improve the potentialities of NMR relaxometry. Here, we review investigations of relaxometry in a wide range of biomolecular systems, such as proteins, phospholipids, or biological fluids. Although multiple models of motions have been developed to describe the relaxation rates and their field dependence, most experimental investigations rely on the model-free approach. A variety of relaxation profiles of both diamagnetic and paramagnetic biomolecular systems are here reviewed and analysed using point dipole–point dipole interaction models.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 4\",\"pages\":\" 1756-1771\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d4cp04306e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04306e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04306e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Field-dependent relaxation profiles of biomolecular systems
The function of biomolecular systems, including biological macromolecules, often crucially depends on their dynamics. Nuclear magnetic resonance (NMR) is one of the most informative methods used to study biomolecules and their internal mobility, with atomic resolution, in near-physiological conditions. NMR relaxation profiles, obtained from the field dependence of the nuclear relaxation rates, in particular, offer the possibility to probe dynamic processes over a wide range of time scales. Relaxation profiles are routinely acquired using field-cycling relaxometers operating at a maximum field of the order of 1 T. These measurements however suffer from a lack of resolution. On the other hand, relaxation rates measured at the high magnetic fields (>4 T) of high resolution NMR spectrometers contain poor information on motions on timescales longer than few nanoseconds. The possibility to acquire relaxation profiles extended to low fields but with high resolution, obtained by shuttling the sample back and forth in the stray field of a high-field spectrometer, is expected to dramatically improve the potentialities of NMR relaxometry. Here, we review investigations of relaxometry in a wide range of biomolecular systems, such as proteins, phospholipids, or biological fluids. Although multiple models of motions have been developed to describe the relaxation rates and their field dependence, most experimental investigations rely on the model-free approach. A variety of relaxation profiles of both diamagnetic and paramagnetic biomolecular systems are here reviewed and analysed using point dipole–point dipole interaction models.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.