{"title":"现代人工智能技术在有机分子力场发展中的应用","authors":"Junmin Chen, Qian Gao, Miaofei Huang and Kuang Yu","doi":"10.1039/D4CP02989E","DOIUrl":null,"url":null,"abstract":"<p >The molecular force field (FF) determines the accuracy of molecular dynamics (MD) and is one of the major bottlenecks that limits the application of MD in molecular design. Recently, artificial intelligence (AI) techniques, such as machine-learning potentials (MLPs), have been rapidly reshaping the landscape of MD. Meanwhile, organic molecular systems feature unique characteristics, and require more careful treatment in both model construction, optimization, and validation. While an accurate and generic organic molecular force field is still missing, significant progress has been made with the facilitation of AI, warranting a promising future. In this review, we provide an overview of the various types of AI techniques used in molecular FF development and discuss both the advantages and weaknesses of these methodologies. We show how AI methods provide unprecedented capabilities in many tasks such as potential fitting, atom typification, and automatic optimization. Meanwhile, it is also worth noting that more efforts are needed to improve the transferability of the model, develop a more comprehensive database, and establish more standardized validation procedures. With these discussions, we hope to inspire more efforts to solve the existing problems, eventually leading to the birth of next-generation generic organic FFs.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 5","pages":" 2294-2319"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of modern artificial intelligence techniques in the development of organic molecular force fields\",\"authors\":\"Junmin Chen, Qian Gao, Miaofei Huang and Kuang Yu\",\"doi\":\"10.1039/D4CP02989E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The molecular force field (FF) determines the accuracy of molecular dynamics (MD) and is one of the major bottlenecks that limits the application of MD in molecular design. Recently, artificial intelligence (AI) techniques, such as machine-learning potentials (MLPs), have been rapidly reshaping the landscape of MD. Meanwhile, organic molecular systems feature unique characteristics, and require more careful treatment in both model construction, optimization, and validation. While an accurate and generic organic molecular force field is still missing, significant progress has been made with the facilitation of AI, warranting a promising future. In this review, we provide an overview of the various types of AI techniques used in molecular FF development and discuss both the advantages and weaknesses of these methodologies. We show how AI methods provide unprecedented capabilities in many tasks such as potential fitting, atom typification, and automatic optimization. Meanwhile, it is also worth noting that more efforts are needed to improve the transferability of the model, develop a more comprehensive database, and establish more standardized validation procedures. With these discussions, we hope to inspire more efforts to solve the existing problems, eventually leading to the birth of next-generation generic organic FFs.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 5\",\"pages\":\" 2294-2319\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp02989e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp02989e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Application of modern artificial intelligence techniques in the development of organic molecular force fields
The molecular force field (FF) determines the accuracy of molecular dynamics (MD) and is one of the major bottlenecks that limits the application of MD in molecular design. Recently, artificial intelligence (AI) techniques, such as machine-learning potentials (MLPs), have been rapidly reshaping the landscape of MD. Meanwhile, organic molecular systems feature unique characteristics, and require more careful treatment in both model construction, optimization, and validation. While an accurate and generic organic molecular force field is still missing, significant progress has been made with the facilitation of AI, warranting a promising future. In this review, we provide an overview of the various types of AI techniques used in molecular FF development and discuss both the advantages and weaknesses of these methodologies. We show how AI methods provide unprecedented capabilities in many tasks such as potential fitting, atom typification, and automatic optimization. Meanwhile, it is also worth noting that more efforts are needed to improve the transferability of the model, develop a more comprehensive database, and establish more standardized validation procedures. With these discussions, we hope to inspire more efforts to solve the existing problems, eventually leading to the birth of next-generation generic organic FFs.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.