BiOCl@ZnIn2S4异质结的双电子转移路径和LSPR光热增强对光催化H2演化、H2O2生成和四环素去除的促进作用

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Fan Wu, Guangyu Wu, Yonggong Tang, Yuwei Pan, Jiangang Han, Jin Zhang, Weinan Xing and Yudong Huang
{"title":"BiOCl@ZnIn2S4异质结的双电子转移路径和LSPR光热增强对光催化H2演化、H2O2生成和四环素去除的促进作用","authors":"Fan Wu, Guangyu Wu, Yonggong Tang, Yuwei Pan, Jiangang Han, Jin Zhang, Weinan Xing and Yudong Huang","doi":"10.1039/D4QI02806F","DOIUrl":null,"url":null,"abstract":"<p >A well-designed catalyst structure can significantly enhance the efficiency of photocatalytic light-trapping. Herein, the local surface plasmon resonance effect (LSPR) generated by introducing BiOCl nanosheets effectively broadened the photoresponsive range of ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> (ZIS), and the photothermal effect of BiOCl increased the temperature of the reaction system of the BiOCl@ZIS-1% composites, which in turn improved the photo-thermal performance and light-harvesting efficiency of the catalyst. The improved photothermal effect promoted the transfer rate of charge carriers across the heterojunction and enhanced the surface reaction kinetics. In addition, Kelvin probe force microscopy and density functional theory (DFT) calculations showed that the difference of merit between BiOCl and ZIS led to the generation of an internal electric field, which not only enhanced the efficiency of photogenerated charges to separate and migrate but also promoted the photocatalytic H<small><sub>2</sub></small> production (13.69 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>), H<small><sub>2</sub></small>O<small><sub>2</sub></small> generation (9670 μM g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) and tetracycline degradation performance (86.2%). In addition, a possible reaction mechanism for photothermal-assisted photocatalysis was presented. Thus, this research proposes a possible direction for constructing a visible photothermal-assisted photocatalytic reaction system.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 3","pages":" 1200-1213"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual electron transfer path and LSPR photothermal enhancement in BiOCl@ZnIn2S4 heterojunction for enhanced photocatalytic H2 evolution, H2O2 production and tetracycline removal†\",\"authors\":\"Fan Wu, Guangyu Wu, Yonggong Tang, Yuwei Pan, Jiangang Han, Jin Zhang, Weinan Xing and Yudong Huang\",\"doi\":\"10.1039/D4QI02806F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A well-designed catalyst structure can significantly enhance the efficiency of photocatalytic light-trapping. Herein, the local surface plasmon resonance effect (LSPR) generated by introducing BiOCl nanosheets effectively broadened the photoresponsive range of ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> (ZIS), and the photothermal effect of BiOCl increased the temperature of the reaction system of the BiOCl@ZIS-1% composites, which in turn improved the photo-thermal performance and light-harvesting efficiency of the catalyst. The improved photothermal effect promoted the transfer rate of charge carriers across the heterojunction and enhanced the surface reaction kinetics. In addition, Kelvin probe force microscopy and density functional theory (DFT) calculations showed that the difference of merit between BiOCl and ZIS led to the generation of an internal electric field, which not only enhanced the efficiency of photogenerated charges to separate and migrate but also promoted the photocatalytic H<small><sub>2</sub></small> production (13.69 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>), H<small><sub>2</sub></small>O<small><sub>2</sub></small> generation (9670 μM g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) and tetracycline degradation performance (86.2%). In addition, a possible reaction mechanism for photothermal-assisted photocatalysis was presented. Thus, this research proposes a possible direction for constructing a visible photothermal-assisted photocatalytic reaction system.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 3\",\"pages\":\" 1200-1213\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d4qi02806f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d4qi02806f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

设计良好的催化剂结构可以显著提高光催化捕光效率。其中,引入BiOCl纳米片产生的局部表面等离子体共振效应(LSPR)有效地拓宽了ZnIn2S4 (ZIS)的光响应范围,BiOCl的光热效应提高了BiOCl@ZIS-1%复合材料反应体系的温度,从而提高了催化剂的光热性能和光收集效率。光热效应的改善提高了载流子在异质结上的转移速率,增强了表面反应动力学。此外,开尔文探针力显微镜和密度功能理论(DFT)计算表明,BiOCl和ZIS之间的性能差异导致了内部电场的产生,这不仅提高了光生电荷的分离和迁移效率,而且还促进了光催化H2生成(13.69 mmol g−1 h−1),H2O2生成(9670 μ g−1 h−1)和四环素降解性能(86.2%)。此外,还提出了光热辅助光催化的可能反应机理。因此,本研究为构建可见光光热辅助光催化反应体系提供了可能的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual electron transfer path and LSPR photothermal enhancement in BiOCl@ZnIn2S4 heterojunction for enhanced photocatalytic H2 evolution, H2O2 production and tetracycline removal†

Dual electron transfer path and LSPR photothermal enhancement in BiOCl@ZnIn2S4 heterojunction for enhanced photocatalytic H2 evolution, H2O2 production and tetracycline removal†

Dual electron transfer path and LSPR photothermal enhancement in BiOCl@ZnIn2S4 heterojunction for enhanced photocatalytic H2 evolution, H2O2 production and tetracycline removal†

A well-designed catalyst structure can significantly enhance the efficiency of photocatalytic light-trapping. Herein, the local surface plasmon resonance effect (LSPR) generated by introducing BiOCl nanosheets effectively broadened the photoresponsive range of ZnIn2S4 (ZIS), and the photothermal effect of BiOCl increased the temperature of the reaction system of the BiOCl@ZIS-1% composites, which in turn improved the photo-thermal performance and light-harvesting efficiency of the catalyst. The improved photothermal effect promoted the transfer rate of charge carriers across the heterojunction and enhanced the surface reaction kinetics. In addition, Kelvin probe force microscopy and density functional theory (DFT) calculations showed that the difference of merit between BiOCl and ZIS led to the generation of an internal electric field, which not only enhanced the efficiency of photogenerated charges to separate and migrate but also promoted the photocatalytic H2 production (13.69 mmol g−1 h−1), H2O2 generation (9670 μM g−1 h−1) and tetracycline degradation performance (86.2%). In addition, a possible reaction mechanism for photothermal-assisted photocatalysis was presented. Thus, this research proposes a possible direction for constructing a visible photothermal-assisted photocatalytic reaction system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信