排列如何平衡?

IF 1 2区 数学 Q1 MATHEMATICS
Gal Beniamini, Nir Lavee, Nati Linial
{"title":"排列如何平衡?","authors":"Gal Beniamini, Nir Lavee, Nati Linial","doi":"10.1007/s00493-024-00127-x","DOIUrl":null,"url":null,"abstract":"<p>A permutation <span>\\(\\pi \\in \\mathbb {S}_n\\)</span> is <i>k</i>-<i>balanced</i> if every permutation of order <i>k</i> occurs in <span>\\(\\pi \\)</span> equally often, through order-isomorphism. In this paper, we explicitly construct <i>k</i>-balanced permutations for <span>\\(k \\le 3\\)</span>, and every <i>n</i> that satisfies the necessary divisibility conditions. In contrast, we prove that for <span>\\(k \\ge 4\\)</span>, no such permutations exist. In fact, we show that in the case <span>\\(k \\ge 4\\)</span>, every <i>n</i>-element permutation is at least <span>\\(\\Omega _n(n^{k-1})\\)</span> far from being <i>k</i>-balanced. This lower bound is matched for <span>\\(k=4\\)</span>, by a construction based on the Erdős–Szekeres permutation.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"2 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Balanced Can Permutations Be?\",\"authors\":\"Gal Beniamini, Nir Lavee, Nati Linial\",\"doi\":\"10.1007/s00493-024-00127-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A permutation <span>\\\\(\\\\pi \\\\in \\\\mathbb {S}_n\\\\)</span> is <i>k</i>-<i>balanced</i> if every permutation of order <i>k</i> occurs in <span>\\\\(\\\\pi \\\\)</span> equally often, through order-isomorphism. In this paper, we explicitly construct <i>k</i>-balanced permutations for <span>\\\\(k \\\\le 3\\\\)</span>, and every <i>n</i> that satisfies the necessary divisibility conditions. In contrast, we prove that for <span>\\\\(k \\\\ge 4\\\\)</span>, no such permutations exist. In fact, we show that in the case <span>\\\\(k \\\\ge 4\\\\)</span>, every <i>n</i>-element permutation is at least <span>\\\\(\\\\Omega _n(n^{k-1})\\\\)</span> far from being <i>k</i>-balanced. This lower bound is matched for <span>\\\\(k=4\\\\)</span>, by a construction based on the Erdős–Szekeres permutation.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00127-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00127-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过序同构,如果顺序k的每个排列在\(\pi \)中同样频繁地出现,则排列\(\pi \in \mathbb {S}_n\)是k平衡的。本文明确构造了\(k \le 3\)和满足必要可除条件的每一个n的k平衡排列。相反,我们证明对于\(k \ge 4\),不存在这样的排列。事实上,我们证明了在\(k \ge 4\)情况下,每个n个元素的排列至少\(\Omega _n(n^{k-1})\)远离k平衡。通过基于Erdős-Szekeres排列的构造来匹配\(k=4\)的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Balanced Can Permutations Be?

A permutation \(\pi \in \mathbb {S}_n\) is k-balanced if every permutation of order k occurs in \(\pi \) equally often, through order-isomorphism. In this paper, we explicitly construct k-balanced permutations for \(k \le 3\), and every n that satisfies the necessary divisibility conditions. In contrast, we prove that for \(k \ge 4\), no such permutations exist. In fact, we show that in the case \(k \ge 4\), every n-element permutation is at least \(\Omega _n(n^{k-1})\) far from being k-balanced. This lower bound is matched for \(k=4\), by a construction based on the Erdős–Szekeres permutation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信