基于放射组学的机器学习模型用于多参数MRI图像中前列腺癌分级组的分类。

IF 1.1 Q4 ENGINEERING, BIOMEDICAL
Journal of Medical Signals & Sensors Pub Date : 2024-12-03 eCollection Date: 2024-01-01 DOI:10.4103/jmss.jmss_47_23
Fatemeh Zandie, Mohammad Salehi, Asghar Maziar, Mohammad Reza Bayatiani, Reza Paydar
{"title":"基于放射组学的机器学习模型用于多参数MRI图像中前列腺癌分级组的分类。","authors":"Fatemeh Zandie, Mohammad Salehi, Asghar Maziar, Mohammad Reza Bayatiani, Reza Paydar","doi":"10.4103/jmss.jmss_47_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to investigate the performance of multiparametric magnetic resonance imaging (mpMRI) radiomic feature-based machine learning (ML) models in classifying the Gleason grade group (GG) of prostate cancer.</p><p><strong>Methods: </strong>In this retrospective study, a total of 203 patients with histopathologically confirmed prostate cancer who underwent mpMRI before prostate biopsy were included. After manual segmentation, radiomic features (RFs) were extracted from T2-weighted, apparent diffusion coefficient, and high b-value diffusion-weighted magnetic resonance imaging (DWMRI). Patients were split into training sets and testing sets according to a ratio of 8:2. A pipeline considering combinations of two feature selection (FS) methods and six ML classifiers was developed and evaluated. The performance of models was assessed using the accuracy, sensitivity, precision, F1-measure, and the area under curve (AUC).</p><p><strong>Results: </strong>On high b-value DWMRI-derived features, a combination of FS method recursive feature elimination (RFE) and classifier random forest achieved the highest performance for classification of prostate cancer into five GGs, with 97.0% accuracy, 98.0% sensitivity, 98.0% precision, and 97.0% F1-measure. The method also achieved an average AUC for GG of 98%.</p><p><strong>Conclusion: </strong>Preoperative mpMRI radiomic analysis based on ML, as a noninvasive approach, showed good performance for classification of prostate cancer into five GGs.</p><p><strong>Advances in knowledge: </strong>Herein, radiomic models based on preoperative mpMRI and ML were developed to classify prostate cancer into 5 GGs. Our study provides evidence that analysis of quantitative RFs extracted from high b-value DWMRI images based on a combination of FS method RFE and classifier random forest can be applied for multiclass grading of prostate cancer with an accuracy of 97.0%.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"14 ","pages":"33"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687675/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images.\",\"authors\":\"Fatemeh Zandie, Mohammad Salehi, Asghar Maziar, Mohammad Reza Bayatiani, Reza Paydar\",\"doi\":\"10.4103/jmss.jmss_47_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aimed to investigate the performance of multiparametric magnetic resonance imaging (mpMRI) radiomic feature-based machine learning (ML) models in classifying the Gleason grade group (GG) of prostate cancer.</p><p><strong>Methods: </strong>In this retrospective study, a total of 203 patients with histopathologically confirmed prostate cancer who underwent mpMRI before prostate biopsy were included. After manual segmentation, radiomic features (RFs) were extracted from T2-weighted, apparent diffusion coefficient, and high b-value diffusion-weighted magnetic resonance imaging (DWMRI). Patients were split into training sets and testing sets according to a ratio of 8:2. A pipeline considering combinations of two feature selection (FS) methods and six ML classifiers was developed and evaluated. The performance of models was assessed using the accuracy, sensitivity, precision, F1-measure, and the area under curve (AUC).</p><p><strong>Results: </strong>On high b-value DWMRI-derived features, a combination of FS method recursive feature elimination (RFE) and classifier random forest achieved the highest performance for classification of prostate cancer into five GGs, with 97.0% accuracy, 98.0% sensitivity, 98.0% precision, and 97.0% F1-measure. The method also achieved an average AUC for GG of 98%.</p><p><strong>Conclusion: </strong>Preoperative mpMRI radiomic analysis based on ML, as a noninvasive approach, showed good performance for classification of prostate cancer into five GGs.</p><p><strong>Advances in knowledge: </strong>Herein, radiomic models based on preoperative mpMRI and ML were developed to classify prostate cancer into 5 GGs. Our study provides evidence that analysis of quantitative RFs extracted from high b-value DWMRI images based on a combination of FS method RFE and classifier random forest can be applied for multiclass grading of prostate cancer with an accuracy of 97.0%.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"14 \",\"pages\":\"33\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_47_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_47_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:探讨基于多参数磁共振成像(mpMRI)放射学特征的机器学习(ML)模型在前列腺癌Gleason分级组(GG)分类中的应用效果。方法:回顾性研究203例经组织病理学证实的前列腺癌患者,在前列腺活检前行mpMRI检查。人工分割后,从t2加权、表观扩散系数和高b值弥散加权磁共振成像(DWMRI)中提取放射特征(RFs)。将患者按8:2的比例分成训练集和测试集。开发并评估了两种特征选择(FS)方法和六种ML分类器组合的管道。采用准确度、灵敏度、精密度、F1-measure和曲线下面积(AUC)评价模型的性能。结果:在高b值dwmri衍生的特征上,FS方法递归特征消除(RFE)和分类器随机森林相结合的方法将前列腺癌分类为5个gg,准确率为97.0%,灵敏度为98.0%,精密度为98.0%,F1-measure为97.0%。该方法对GG的平均AUC为98%。结论:术前基于ML的mpMRI放射学分析作为一种无创的方法,对前列腺癌的5种gg分类具有良好的效果。知识进展:本文建立了基于术前mpMRI和ML的放射学模型,将前列腺癌分为5种gg。我们的研究证明,结合FS方法RFE和分类器随机森林对高b值DWMRI图像提取的定量rf进行分析,可以应用于前列腺癌的多类别分级,准确率为97.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images.

Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images.

Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images.

Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images.

Purpose: This study aimed to investigate the performance of multiparametric magnetic resonance imaging (mpMRI) radiomic feature-based machine learning (ML) models in classifying the Gleason grade group (GG) of prostate cancer.

Methods: In this retrospective study, a total of 203 patients with histopathologically confirmed prostate cancer who underwent mpMRI before prostate biopsy were included. After manual segmentation, radiomic features (RFs) were extracted from T2-weighted, apparent diffusion coefficient, and high b-value diffusion-weighted magnetic resonance imaging (DWMRI). Patients were split into training sets and testing sets according to a ratio of 8:2. A pipeline considering combinations of two feature selection (FS) methods and six ML classifiers was developed and evaluated. The performance of models was assessed using the accuracy, sensitivity, precision, F1-measure, and the area under curve (AUC).

Results: On high b-value DWMRI-derived features, a combination of FS method recursive feature elimination (RFE) and classifier random forest achieved the highest performance for classification of prostate cancer into five GGs, with 97.0% accuracy, 98.0% sensitivity, 98.0% precision, and 97.0% F1-measure. The method also achieved an average AUC for GG of 98%.

Conclusion: Preoperative mpMRI radiomic analysis based on ML, as a noninvasive approach, showed good performance for classification of prostate cancer into five GGs.

Advances in knowledge: Herein, radiomic models based on preoperative mpMRI and ML were developed to classify prostate cancer into 5 GGs. Our study provides evidence that analysis of quantitative RFs extracted from high b-value DWMRI images based on a combination of FS method RFE and classifier random forest can be applied for multiclass grading of prostate cancer with an accuracy of 97.0%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信