基于放射组学的机器学习模型用于多参数MRI图像中前列腺癌分级组的分类。

IF 1.3 Q4 ENGINEERING, BIOMEDICAL
Journal of Medical Signals & Sensors Pub Date : 2024-12-03 eCollection Date: 2024-01-01 DOI:10.4103/jmss.jmss_47_23
Fatemeh Zandie, Mohammad Salehi, Asghar Maziar, Mohammad Reza Bayatiani, Reza Paydar
{"title":"基于放射组学的机器学习模型用于多参数MRI图像中前列腺癌分级组的分类。","authors":"Fatemeh Zandie, Mohammad Salehi, Asghar Maziar, Mohammad Reza Bayatiani, Reza Paydar","doi":"10.4103/jmss.jmss_47_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to investigate the performance of multiparametric magnetic resonance imaging (mpMRI) radiomic feature-based machine learning (ML) models in classifying the Gleason grade group (GG) of prostate cancer.</p><p><strong>Methods: </strong>In this retrospective study, a total of 203 patients with histopathologically confirmed prostate cancer who underwent mpMRI before prostate biopsy were included. After manual segmentation, radiomic features (RFs) were extracted from T2-weighted, apparent diffusion coefficient, and high b-value diffusion-weighted magnetic resonance imaging (DWMRI). Patients were split into training sets and testing sets according to a ratio of 8:2. A pipeline considering combinations of two feature selection (FS) methods and six ML classifiers was developed and evaluated. The performance of models was assessed using the accuracy, sensitivity, precision, F1-measure, and the area under curve (AUC).</p><p><strong>Results: </strong>On high b-value DWMRI-derived features, a combination of FS method recursive feature elimination (RFE) and classifier random forest achieved the highest performance for classification of prostate cancer into five GGs, with 97.0% accuracy, 98.0% sensitivity, 98.0% precision, and 97.0% F1-measure. The method also achieved an average AUC for GG of 98%.</p><p><strong>Conclusion: </strong>Preoperative mpMRI radiomic analysis based on ML, as a noninvasive approach, showed good performance for classification of prostate cancer into five GGs.</p><p><strong>Advances in knowledge: </strong>Herein, radiomic models based on preoperative mpMRI and ML were developed to classify prostate cancer into 5 GGs. Our study provides evidence that analysis of quantitative RFs extracted from high b-value DWMRI images based on a combination of FS method RFE and classifier random forest can be applied for multiclass grading of prostate cancer with an accuracy of 97.0%.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"14 ","pages":"33"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687675/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images.\",\"authors\":\"Fatemeh Zandie, Mohammad Salehi, Asghar Maziar, Mohammad Reza Bayatiani, Reza Paydar\",\"doi\":\"10.4103/jmss.jmss_47_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aimed to investigate the performance of multiparametric magnetic resonance imaging (mpMRI) radiomic feature-based machine learning (ML) models in classifying the Gleason grade group (GG) of prostate cancer.</p><p><strong>Methods: </strong>In this retrospective study, a total of 203 patients with histopathologically confirmed prostate cancer who underwent mpMRI before prostate biopsy were included. After manual segmentation, radiomic features (RFs) were extracted from T2-weighted, apparent diffusion coefficient, and high b-value diffusion-weighted magnetic resonance imaging (DWMRI). Patients were split into training sets and testing sets according to a ratio of 8:2. A pipeline considering combinations of two feature selection (FS) methods and six ML classifiers was developed and evaluated. The performance of models was assessed using the accuracy, sensitivity, precision, F1-measure, and the area under curve (AUC).</p><p><strong>Results: </strong>On high b-value DWMRI-derived features, a combination of FS method recursive feature elimination (RFE) and classifier random forest achieved the highest performance for classification of prostate cancer into five GGs, with 97.0% accuracy, 98.0% sensitivity, 98.0% precision, and 97.0% F1-measure. The method also achieved an average AUC for GG of 98%.</p><p><strong>Conclusion: </strong>Preoperative mpMRI radiomic analysis based on ML, as a noninvasive approach, showed good performance for classification of prostate cancer into five GGs.</p><p><strong>Advances in knowledge: </strong>Herein, radiomic models based on preoperative mpMRI and ML were developed to classify prostate cancer into 5 GGs. Our study provides evidence that analysis of quantitative RFs extracted from high b-value DWMRI images based on a combination of FS method RFE and classifier random forest can be applied for multiclass grading of prostate cancer with an accuracy of 97.0%.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"14 \",\"pages\":\"33\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_47_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_47_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:探讨基于多参数磁共振成像(mpMRI)放射学特征的机器学习(ML)模型在前列腺癌Gleason分级组(GG)分类中的应用效果。方法:回顾性研究203例经组织病理学证实的前列腺癌患者,在前列腺活检前行mpMRI检查。人工分割后,从t2加权、表观扩散系数和高b值弥散加权磁共振成像(DWMRI)中提取放射特征(RFs)。将患者按8:2的比例分成训练集和测试集。开发并评估了两种特征选择(FS)方法和六种ML分类器组合的管道。采用准确度、灵敏度、精密度、F1-measure和曲线下面积(AUC)评价模型的性能。结果:在高b值dwmri衍生的特征上,FS方法递归特征消除(RFE)和分类器随机森林相结合的方法将前列腺癌分类为5个gg,准确率为97.0%,灵敏度为98.0%,精密度为98.0%,F1-measure为97.0%。该方法对GG的平均AUC为98%。结论:术前基于ML的mpMRI放射学分析作为一种无创的方法,对前列腺癌的5种gg分类具有良好的效果。知识进展:本文建立了基于术前mpMRI和ML的放射学模型,将前列腺癌分为5种gg。我们的研究证明,结合FS方法RFE和分类器随机森林对高b值DWMRI图像提取的定量rf进行分析,可以应用于前列腺癌的多类别分级,准确率为97.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images.

Purpose: This study aimed to investigate the performance of multiparametric magnetic resonance imaging (mpMRI) radiomic feature-based machine learning (ML) models in classifying the Gleason grade group (GG) of prostate cancer.

Methods: In this retrospective study, a total of 203 patients with histopathologically confirmed prostate cancer who underwent mpMRI before prostate biopsy were included. After manual segmentation, radiomic features (RFs) were extracted from T2-weighted, apparent diffusion coefficient, and high b-value diffusion-weighted magnetic resonance imaging (DWMRI). Patients were split into training sets and testing sets according to a ratio of 8:2. A pipeline considering combinations of two feature selection (FS) methods and six ML classifiers was developed and evaluated. The performance of models was assessed using the accuracy, sensitivity, precision, F1-measure, and the area under curve (AUC).

Results: On high b-value DWMRI-derived features, a combination of FS method recursive feature elimination (RFE) and classifier random forest achieved the highest performance for classification of prostate cancer into five GGs, with 97.0% accuracy, 98.0% sensitivity, 98.0% precision, and 97.0% F1-measure. The method also achieved an average AUC for GG of 98%.

Conclusion: Preoperative mpMRI radiomic analysis based on ML, as a noninvasive approach, showed good performance for classification of prostate cancer into five GGs.

Advances in knowledge: Herein, radiomic models based on preoperative mpMRI and ML were developed to classify prostate cancer into 5 GGs. Our study provides evidence that analysis of quantitative RFs extracted from high b-value DWMRI images based on a combination of FS method RFE and classifier random forest can be applied for multiclass grading of prostate cancer with an accuracy of 97.0%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信