基于结构的 Samaderine E 和 Bismurrayaquinone A 植物化学物质作为 KRas 癌症蛋白潜在抑制剂的相互作用研究。

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Z Hasan, M Y Areeshi, R K Mandal, S Haque
{"title":"基于结构的 Samaderine E 和 Bismurrayaquinone A 植物化学物质作为 KRas 癌症蛋白潜在抑制剂的相互作用研究。","authors":"Z Hasan, M Y Areeshi, R K Mandal, S Haque","doi":"10.1080/1062936X.2024.2439315","DOIUrl":null,"url":null,"abstract":"<p><p>Ras is identified as a human oncogene which is frequently mutated in human cancers. Among its three isoforms (K, N, and H), KRas is the most frequently mutated. Mutant Ras exhibits reduced GTPase activity, leading to the prolonged activation of its conformation. This extended activation promotes Ras-dependent signalling, contributing to cancer cell survival and growth. In this study, we conducted structure-based virtual screening of 11698 phytochemicals in the IMPPAT 2.0 database to identify inhibitors of KRas. We identified two phytochemicals with fair binding affinity, and their binding patterns with KRas were analysed in detail. Additionally, we performed 200 ns molecular dynamics (MD) simulations of each complex to understand the interaction mechanism of KRas with the newly identified compounds, such as Samaderine E and Bismurrayaquinone A. These phytochemicals bind to the binding site residues ARG41 and ASP54, causing conformational changes in KRas. The RMSD, RMSF, Rg, SASA, hydrogen bond, and secondary structure analysis studies suggested the potential of the selected phytochemicals. The identification of Samaderine E and Bismurrayaquinone A as phytochemicals binding to a functional pocket on KRas, supported by PCA and FEL analysis, highlights their potential as effective therapeutic inhibitors of the KRas oncoprotein.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"1095-1108"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-based interaction study of Samaderine E and Bismurrayaquinone A phytochemicals as potential inhibitors of KRas oncoprotein.\",\"authors\":\"Z Hasan, M Y Areeshi, R K Mandal, S Haque\",\"doi\":\"10.1080/1062936X.2024.2439315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ras is identified as a human oncogene which is frequently mutated in human cancers. Among its three isoforms (K, N, and H), KRas is the most frequently mutated. Mutant Ras exhibits reduced GTPase activity, leading to the prolonged activation of its conformation. This extended activation promotes Ras-dependent signalling, contributing to cancer cell survival and growth. In this study, we conducted structure-based virtual screening of 11698 phytochemicals in the IMPPAT 2.0 database to identify inhibitors of KRas. We identified two phytochemicals with fair binding affinity, and their binding patterns with KRas were analysed in detail. Additionally, we performed 200 ns molecular dynamics (MD) simulations of each complex to understand the interaction mechanism of KRas with the newly identified compounds, such as Samaderine E and Bismurrayaquinone A. These phytochemicals bind to the binding site residues ARG41 and ASP54, causing conformational changes in KRas. The RMSD, RMSF, Rg, SASA, hydrogen bond, and secondary structure analysis studies suggested the potential of the selected phytochemicals. The identification of Samaderine E and Bismurrayaquinone A as phytochemicals binding to a functional pocket on KRas, supported by PCA and FEL analysis, highlights their potential as effective therapeutic inhibitors of the KRas oncoprotein.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\" \",\"pages\":\"1095-1108\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2024.2439315\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2439315","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Ras是一种人类致癌基因,在人类癌症中经常发生突变。在其三种亚型(K, N和H)中,KRas是最常发生突变的。突变体Ras表现出GTPase活性降低,导致其构象的激活时间延长。这种延长的激活促进ras依赖的信号传导,有助于癌细胞的存活和生长。在本研究中,我们对IMPPAT 2.0数据库中的11698种植物化学物质进行了基于结构的虚拟筛选,以确定KRas的抑制剂。我们鉴定了两种具有良好结合亲和力的植物化学物质,并详细分析了它们与KRas的结合模式。此外,我们对每个复合物进行了200 ns的分子动力学(MD)模拟,以了解KRas与新发现的化合物(如Samaderine E和Bismurrayaquinone a)的相互作用机制。这些植物化学物质结合到结合位点残基ARG41和ASP54上,引起KRas的构象变化。RMSD、RMSF、Rg、SASA、氢键和二级结构分析表明了所选植物化学物质的潜力。Samaderine E和Bismurrayaquinone A作为植物化学物质结合到KRas上的功能口袋上,并得到PCA和FEL分析的支持,突出了它们作为KRas癌蛋白有效治疗抑制剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-based interaction study of Samaderine E and Bismurrayaquinone A phytochemicals as potential inhibitors of KRas oncoprotein.

Ras is identified as a human oncogene which is frequently mutated in human cancers. Among its three isoforms (K, N, and H), KRas is the most frequently mutated. Mutant Ras exhibits reduced GTPase activity, leading to the prolonged activation of its conformation. This extended activation promotes Ras-dependent signalling, contributing to cancer cell survival and growth. In this study, we conducted structure-based virtual screening of 11698 phytochemicals in the IMPPAT 2.0 database to identify inhibitors of KRas. We identified two phytochemicals with fair binding affinity, and their binding patterns with KRas were analysed in detail. Additionally, we performed 200 ns molecular dynamics (MD) simulations of each complex to understand the interaction mechanism of KRas with the newly identified compounds, such as Samaderine E and Bismurrayaquinone A. These phytochemicals bind to the binding site residues ARG41 and ASP54, causing conformational changes in KRas. The RMSD, RMSF, Rg, SASA, hydrogen bond, and secondary structure analysis studies suggested the potential of the selected phytochemicals. The identification of Samaderine E and Bismurrayaquinone A as phytochemicals binding to a functional pocket on KRas, supported by PCA and FEL analysis, highlights their potential as effective therapeutic inhibitors of the KRas oncoprotein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信